Это- препринт Материалов, принятых для публикации в журнале ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ, ©2015, владелец авторского права указан в Журнале (http://www.maik.ru)

ВЛИЯНИЕ ПОЛУСУТОЧНЫХ И ПОЛУМЕСЯЧНЫХ ЛУННЫХ ПРИЛИВОВ НА ОБЛАСТЬ МЕЗОПАУЗЫ ПО НАБЛЮДЕНИЯМ ХАРАКТЕРИСТИК ГИДРОКСИЛЬНОГО СЛОЯ И СЕРЕБРИСТЫХ ОБЛАКОВ.

Н.Н. Перцев¹, П.А. Далин^{2,3}, В.И. Перминов¹

¹ Федеральное государственное бюджетное учреждение науки Институт физики атмосферы им. А.М.Обухова РАН, г. Москва ² Федеральное государственное бюджетное учреждение науки Институт космических исследований РАН, г. Москва

³Шведский институт космической физики, г. Кируна, Швеция

e-mails: <u>n.pertsev@bk.ru;</u> <u>pdalin@irf.se;</u> <u>v.perminov@rambler.ru</u>

Поступила в редакцию:

B статье рассматриваются новые результаты по лунным приливам В среднеширотной области мезопаузы. Среди исследованных полумесячных И полусуточных лунных приливных гармоник по данным наблюдений серебристых облаков спектрофотометрических измерений гидроксильного излучения статистически И значимыми оказались полумесячный зональный прилив (13.66 сут.), полумесячный синодический прилив (14.77 сут.) и полусуточный прилив (12 ч 25 мин). Колебания в температуре летнего гидроксильного слоя и яркости серебристых облаков оказываются согласованными примерно в противофазе. Впервые рассмотрены два возможных механизма генерации синодической полумесячной гармоники. При этом статистический анализ гидроксильных данных показывает, что наиболее вероятным процессом является нелинейная демодуляция суперпозиции солнечной и лунной полусуточных приливных гармоник.

1. Введение-

Область мезопаузы (ОМ) представляет собой самый холодный атмосферный слой (80-

100 км) верхней атмосферы Земли. Лунные полусуточные приливы в ОМ стали известны благодаря работе датского геофизика Эгедаля, обнаружившего их в изменениях высот сгорания метеоров [Egedal, 1929]. В 60-е годы прошлого века исследователи свечения ночного неба обратили внимание на 27÷29 - дневные вариации гидроксильной температуры и интенсивности некоторых линий свечения неба. Шефовым [1967] межсуточные вариации были сопоставлены с синодическим периодом Луны. Полученные методом наложения эпох зависимости температуры и интенсивности гидроксильного излучения (максимум эмиссии на 87 км) от «возраста Луны» указывали на наличие полумесячной (14.77 сут) и меньшей по амплитуде месячной (29.5 сут) гармоник. Лунные приливы были обнаружены и в мезосферных (серебристых) облаках (МСО), наблюдаемых летом на широтах 55-60° обоих полушарий [Кропоткина и Шефов, 1975]. При этом вероятность появления серебристых облаков строилась уже не в зависимости от возраста Луны, а от локального лунного времени. В результате две первых гармоники в полученных зависимостях интерпретировались авторами как суточный и полусуточный лунные приливы с периодами соответственно 24 ч 51 мин и 12 ч 25 мин (в часах и минутах обычного солнечного времени). Лунно-приливные гармоники были получены также в [Gadsden and Schröder, 1989]. Но поскольку они определялись из зависимости от возраста Луны, то соответственно интерпретировались как месячная и полумесячная гармоники. В некоторой степени произвольный подход к выбору гармоник в вариациях серебристых облаков неизбежен из-за коротких летних ночей, когда наблюдения МСО возможны только в течение нескольких часов около местной полночи, и поэтому возраст Луны и местное лунное время являются в первом приближении взаимнооднозначными функциями [Чепмен и Линдзен, 1972]. В результате полусуточный и полумесячный, а также суточный и месячный лунные приливы становятся неразличимы без привлечения дополнительной информации [Pertsev and Dalin, 2010]. В настоящей работе для более длинных (до 14 часов) зимних измерений ночного гидроксильного излучения эта неразличимость снимается. Первая попытка «расцепления» полусуточного от полумесячного и суточного от месячного (синодического) лунных приливов по измерениям параметров гидроксильного излучения предпринята в [Шефов и др., 2006]. В этой работе найдено, что амплитуды лунного полусуточного и суточного приливов, если и значимы, то, по крайней мере, на порядок меньше, полумесячного и месячного прилива, соответственно.

Настоящее исследование является продолжением статистического поиска лунных возмущений в характеристиках слоев области мезопаузы на новом уровне с учетом:

- возросшего объёма данных;

- расширения списка лунных приливных аргументов (к традиционно использовавшимся

лунной фазе и местному лунному времени добавлены склонение Луны и расстояние от Земли до Луны);

- многомерного регрессионного анализа, необходимость которого обусловлена
 пониманием статистической взаимозависимости между различными лунными аргументами
 [Dalin et al., 2006];

- частичной маскировки лунного сигнала в МСО лунным сигналом в погодных условиях в тропосфере при наблюдении с поверхности Земли [Dalin et al., 2006; Pertsev et al., 2007; Pertsev and Dalin, 2010].

Целью настоящей работы является анализ колебаний, которые возникают в характеристиках излучающего слоя гидроксила и серебристых облаков благодаря изменению трех наиболее физически значимых координат Луны при ее движении относительно Земли: экваториального склонения, геоцентрического расстояния и лунной фазы (последняя, строго говоря, описывает не взаимное движение Луны и Земли, а угол Солнце-Земля-Луна). В результате предпринятого поиска отклик на изменения всех трех аргументов был найден с разными коэффициентами регрессии, некоторые из которых оказались статистически значимыми в яркости МСО, температуре *T*_{он} и индексе *I*₇₇₉, отображающем фоновую атмосферную плотность в излучающем слое гидроксила. В настоящей статье излагаются результаты, касающиеся только полусуточного и полумесячного лунных приливов.

2. Теоретические основания

Луна, как и Солнце, создает гравитационные приливы в земной атмосфере (солнечная гравитационная приливная сила примерно в два раза слабее лунной). Лунный приливной потенциал описывается следующим выражением [Чепмен и Линдзен, 1972]:

$$\Pi_L \approx -\frac{3}{2} \frac{GMr^2}{R_L^3} P_2(\cos\theta), \qquad (1)$$

где G - гравитационная постоянная, M - масса Луны, r - расстояние от центра Земли до пробной точки, R_L - изменяющееся расстояние от Луны до Земли, θ - полярный угол между центром Луны и пробной точкой,

$$P_{2}(\cos \theta) = [3(\sin^{2} \varphi) - 1/3)(\sin^{2} \delta_{L} - 1/3) - \sin^{2} \varphi \sin^{2} \delta_{L} \cos \tau_{L} + \cos^{2} \varphi \cos^{2} \delta_{L} \cos^{2} \tau_{L}] / 2$$
(2)

– тригонометрический многочлен (полином Лежандра второй степени), который может быть выражен через широту пробной точки φ , склонение Луны δ_L относительно экватора и часовой угол $\tau_L = LT \cdot 15 - v$, где LT - среднее местное солнечное время (в часах), v - фаза

Луны, которая равна разнице между эклиптическими долготами средней Луны *s* и среднего Солнца *h* (в градусах).

Как видно из (2), в лунный приливной потенциал входят:

- «зональный» (синхронный на всех долготах) полумесячный лунный прилив (13.66 дней – половина тропического месяца), который пропорционален sin²δ_L, причем δ_L изменяется в пределах ±28.6 градуса;

- лунный суточный прилив (пропорциональный соs τ_L) со средним «лунным днем» равным 24 час 50.47 мин;

- лунный полусуточный прилив (пропорциональный cos2τ_L) с периодом равным половине лунного дня.

Несмотря на некоторую громоздкость, лунный приливной потенциал можно описать с достаточной степенью точности тремя параметрами орбитального движения Луны: ее склонением относительно экватора ($\pm 28.6^{\circ}$), расстоянием от Земли до Луны (R_L меняется от 56 до 64 земных радиусов, з.р.) и ее фазой ($v=0^{\circ}$ соответствует новолунию, $v=90^{\circ}$ - первой четверти и т.д.). Для анализа суточных и полусуточных лунных приливов, как правило, используется «местное лунное время» [Чепмен и Линдзен, 1972],

 $LT_L = LT - v/15.$

(3)

3. Анализируемые данные

Для анализа были взяты данные за летние сезоны (16 мая – 16 августа) с 1962 по 2013 гг. и зимние сезоны (16 ноября – 15 февраля) с 2000 по 2013 гг. Расчеты всех перечисленных лунных эфемерид проводились с достаточно высокой точностью на основе [Montenbruck and Pfleger, 2000]. Эти эфемериды, а также некоторые их комбинации, отвечающие за определенные компоненты лунного прилива, использовались как аргументы, а характеристики серебристых облаков или гидроксильного слоя – как функции этих аргументов.

Из характеристик излучающего гидроксильного слоя для дальнейшего анализа взяты измеренные в 2000-2013 гг. вращательная температура T_{OH} , определяемая по полосе OH(6,2) и совпадающая со средневзвешенной по толщине слоя температурой окружающего воздуха [Перминов и др., 2014], а также отношение $I_{7/9}$ интенсивностей полос OH(7-3) и OH(9-4), которое может служить индикатором атмосферной плотности в излучающем слое гидроксила [Pertsev and Perminov, 2008]. Поскольку основной причиной изменения плотности воздуха в излучающем слое гидроксила являются его вертикальные смещения, то $I_{7/9}$ можно принять также за индикатор вертикальной координаты гидроксильного слоя [Pertsev et al., 1999].

Измерения гидроксильных характеристик были выполнены спектрографическим методом на Звенигородской обсерватории Института физики атмосферы им. А.М.Обухова РАН [Семенов и др., 2002]. Поле зрения спектрографа было центрировано на область излучающего гидроксильного слоя с координатами 57° N и 36° E.

В качестве единственной суточной переменной, характеризующей активность серебристых облаков, использована оценка их максимальной яркости за ночь по пятибалльной шкале (0÷5) [Ромейко и др., 2002]. Для анализа использована база данных по наблюдениям серебристых облаков в Подмосковье за 1962-2013 гг. [Pertsev et al., 2014]. В ней имеется некоторая неоднородность наблюдений по годам, обсуждаемая в [Pertsev et al., 2014] и связанная с переходом от визуальных наблюдений МСО к автоматической фотосъемке в 2005 году. Однако для проводимого в настоящей работе статистического исследования она несущественна.

4. Взаимозависимость лунных координат и взаимная маскировка составляющих лунного прилива

Как будет показано в этом разделе, некоторые лунные аргументы (переменные) не являются статистически независимыми, и это значительно затрудняет анализ. Под статистической взаимозависимостью аргументов мы понимаем неравномерность распределения точек, используемых для регрессионного анализа, в пространстве аргументов (см. рис. 1-4). Эта неравномерность возникает объективно по законам небесной механики, если эти аргументы рассмотреть не как аргументы, а как функции времени на достаточно коротком (сезонном) временном интервале. В нашем подходе мы не рассматриваем аргументы как функции времени, а используем регрессионный анализ, в котором функция зависит от нескольких аргументов, но при этом сами аргументы обладают статистической взаимозависимостью (мультиколлинеарностью) [Кремер, 2004]. Особенно ярко это проявляется для местного лунного времени LT_L и фазы Луны v в летний сезон. При отборе данных в одно и то же местное солнечное время местное лунное время пробегает 24-часовой цикл за синодический месяц, при этом любая гармоника лунно-суточного цикла становится неотличимой от гармоники с таким же номером от синодического месяца. Рис. 1 иллюстрирует статистическую взаимозависимость аргументов LT_L и v для летней ситуации полуночных гидроксильных наблюдений (а) и ситуации гидроксильных измерений на протяжении длинных зимних ночей (б). Во время короткой летней ночи, когда все измерения сконцентрированы вблизи местной солнечной полуночи (LT=0), для точек, соответствующих измерениям, возникает взаимно-однозначная зависимость между LT_L и v (рис.1а). Наклонная линия, возникающая при этом на графике, соответствует, согласно (3), условию LT=0, налагаемому на множество значений LT_L и v. В зимний сезон (рис.1б) условие LT=0 меняется на неравенство LT<6.5 ч или >17.5 ч. Такое ограничение отображается на рисунке широкими наклонными полосами, пустые промежутки между которыми соответствуют светлому времени, не позволяющему проводить измерения.

Благодаря указанной почти взаимно-однозначной зависимости LT_L и *v* для лета без привлечения дополнительной информации лунный полусуточный прилив становится неотличимым от полумесячного синодического, а лунный суточный – от месячного синодического. Поэтому в первых работах, посвященных лунным эффектам в МСО, авторы даже не пытались отличить один эффект от другого. При весьма похожих относительных амплитудах и фазах Кропоткина и Шефов [1975] описали найденный эффект как суточный и полусуточный прилив, a Gadsden and Schröder [1989], ссылаясь на первых, как месячный и полумесячный прилив. Отметим, что ни одна из компонент формулы (2) не содержит синодического (29.53 суток) или полусинодического (14.77 суток) периода. Однако учет общего множителя R_L^{-3} в (1), который демонстрирует не только колебание с основным (аномалистическим) периодом 27.55 сут., но и слабую модуляцию солнечным притяжением с полусинодического колебания в рамках теории лунных гравитационных приливов.

Анализ лунного приливного потенциала (1) показывает, что за исключением полярной области полусуточный вклад в приливной потенциал гораздо больше, чем вклад полусинодической модуляции общего множителя $R_L^{,3}$. Тем не менее, на основании только этого вряд ли можно отказать полумесячному приливу в праве на существование: частоты полусуточного и полумесячного процессов отличаются в ~30 раз; более слабые при генерации волны могут лучше передаваться в область наблюдения и приводить в итоге к большим эффектам в температуре и других измеряемых величинах. В некоторых публикациях, начиная с [Howard, 1820], авторы пытаются объяснять происхождение полумесячного синодического сигнала за счет суперпозиции лунных и солнечных гравитационных приливов, однако отметим, что такая интерпретация объясняет лишь появление полумесячной огибающей сигнала с полусуточной несущей частотой. Для преобразования этого колебания в синусоидальное колебание с полумесячной частотой требуется нелинейный механизм, подобный демодулятору в радиотехнике.

Статистическая взаимозависимость аргументов LT_L и v для зимнего сезона, как показывает рис. 1 (б), значительно слабее, и это дает возможность разделения суточного и месячного синодического приливов, а полусуточного – от полумесячного синодического прилива. Существует также статистическая взаимозависимость лунной фазы v и лунного

склонения δ_l (эта зависимость противоположна зимой и летом) [Dalin et al., 2006]. Для летнего сезона она показана на рис. 2. Каждая точка на нем соответствует паре полуночных значений ν и δ_l для определенной ночи, взятой для анализа, а вся совокупность точек – полному набору анализируемых летних ночей из многолетнего периода 2000-2013 гг. Из него видно, что если существует какая-либо зависимость от фазы Луны, то такая зависимость может быть интерпретирована изменениями в склонении Луны, и наоборот. Такой же смысл имеют рис. 3 (для летнего сезона) и рис. 4 (для зимнего сезона), но для переменных лунная фаза – лунное склонение. Они показывают сильную неоднородность массива точек по этим переменным при значениях расстояния от Земли до Луны близких к перигейным [Dalin et al., 2006]. В связи с такой неоднородностью совокупности точек по лунным аргументам возможна взаимная маскировка компонент прилива. Чтобы исключить ее, необходимо выполнить, во-первых, многомерный регрессионный анализ, и, во-вторых, проверку каждой значимой гармоники на различных вариантах списка аргументов и различных многомерных интервалах изменения аргументов с целью выявить и исключить возможное паразитное влияние этой неоднородности. Так, при анализе гармоники с полусинодическим периодом необходимо проверить, не вызвана ли она полусинодической неоднородностью совокупности точек при расстояниях до Луны меньших 58 земных радиусов (см. рис. 3) [Dalin et al., 2006]. Это можно сделать пробным исключением из статистики всех точек с такими расстояниями. В результате получается, что для полноценной проверки статистических результатов не достаточно раз и навсегда установленного списка лунных аргументов и границ их изменения. Для каждой проверяемой гармоники нужно проводить несколько вариантов расчетов.

5. Метод анализа

Для нахождения вклада различных компонент лунного прилива в характеристики излучающего гидроксильного слоя и серебристых облаков использовался стандартный линейный многомерный регрессионный анализ, позволяющий найти соответствующие коэффициенты регрессии и их статистические погрешности с заданной вероятностью. Возможное влияние взаимозависимости аргументов проверялось. При поиске полусуточных, полумесячных и других составляющих лунного прилива учитывалось возможное запаздывание по фазе отклика на лунное воздействие. Поэтому вычисление коэффициентов регрессии для всех описанных выше колебательных компонент прилива осуществлялось одновременно для зависимости от косинуса и от синуса, а затем вычислялась фаза запаздывания для наибольшей амплитуды отклика.

Практика выявления слабых сигналов показывает, что для наилучшего результата и

повышения статистической значимости необходимо предварительно исключить из анализируемого ряда все посторонние эффекты, не связанные с искомым влиянием. При расчетах опробовалось несколько различных фильтраций. Индекс *A* для фильтрации исходных временных рядов означает исключение среднемноголетних вариаций в течение суток и сезона, а также средних значений за каждый сезон (обусловленных посторонними процессами межгодовой изменчивости). Индекс *B*, используемый только для фильтрации гидроксильной температуры, означает дополнительно исключение из рядов температуры вертикальных смещений гидроксильного слоя, отображаемых переменной *I*_{7/9} (подобная методика обоснована в [Pertsev et al., 1999]). Кроме того, для некоторых переменных использовалось исключение точек с очень большими и очень малыми значениями.

6. Результаты анализа

6.1. Зимний излучающий слой гидроксила

Зимний гидроксильный слой оказался подверженным влиянию как полумесячного, так и (в меньшей степени) полусуточного прилива. Соответствующие коэффициенты регрессии (КР) приведены в табл.1. Для сопоставления найденных гармоник с полным характерным разбросом исследуемых величин указаны также стандартные отклонения (СтО) последних. Исключение областей сильной взаимозависимости аргументов (табл.2) и, кроме этого, сильно выпадающих значений *I*_{7/9} (табл.3) заметно влияют на результаты анализа. Окончательно принимаемый результат содержится в табл.3. Он показывает, что для зимней температуры гидроксильного слоя значимыми являются полумесячный зональный (тропический) и полумесячный синодический приливы, а для индекса *I*_{7/9} - полусуточный прилив. Такое различное поведение двух характеристик излучающего слоя OH, по-видимому, вызванных изменениями профиля концентрации атомарного кислорода. Полусуточный прилив в меньшей степени (со значительно меньшей вероятностью значимости) проявляется в гидроксильной температуре из-за ее осреднения по толщине излучающего слоя OH.

Как уже отмечалось в разделе 4, происхождение полумесячного синодического колебания в атмосферных данных может происходить за счет двух разных механизмов – за счет полумесячной синодической модуляции общего множителя R_L^{-3} солнечным притяжением и/или за счет нелинейной демодуляции полумесячной огибающей сигнала с полусуточной несущей частотой. Результаты анализа температурных данных вполне определенно отвергают первый из этих механизмов. Несмотря на то, что даже после исключения данных с

 R_L <58 з.р. значения R_L все еще содержат в используемом массиве точек значимое полумесячное синодическое колебание, исключение или добавление в список аргументов величины R_L^{-3} практически не меняет амплитуд и фаз значимых колебаний в зимней температуре гидроксильного слоя, найденных в табл. 3. Что же касается возможного механизма осуществления демодуляции, то им может быть квадратичная нелинейность. Если сумма синусоид с солнечным полусуточным периодом 12 часов и лунным полусуточным периодом 12 ч 25 мин14 с возводится в квадрат, в результате возникает сумма синусоид с новыми периодами ∞ , 6 ч, 6 ч 06 мин, 6ч 13 мин и 14.77 сут. Последний из перечисленных периодов как раз и соответствует лунному полумесячному синодическому колебанию.

И полумесячное зональное, и полумесячное синодическое колебание в температуре зимнего гидроксильного слоя весьма заметны по величине: и то, и другое дают полный размах колебания около 5 К, что вполне сопоставимо с регулярным изменением температуры в суточном цикле [Корр et al., 2015].

6.2. Летний излучающий слой гидроксила

Анализ лунных приливов в характеристиках летнего излучающего гидроксильного слоя проводился аналогично, за исключением того, что в список аргументов включался лишь один из двух аргументов, LT_L или v, поскольку лунный полусуточный и полумесячный синодический приливы, как указывалось выше, для летних условий становятся статистически неразличимы. Ниже приводится табл.4 результатов для летнего гидроксильного слоя, где по аналогии с табл.3. из анализа исключены области сильной взаимозависимости аргументов и, кроме этого, сильно выпадающие значения аргументов. Из-за того, что летом точек в несколько раз меньше, поскольку ночи более короткие, чем зимой, а каждая точка соответствует часовому осреднению гидроксильных измерений, ошибки для летних КР больше, и уровень значимости дается для вероятности 90%.

Как и для зимнего сезона, значимый эффект для полумесячного зонального прилива в температуре и значимый эффект в индексе $I_{7/9}$ удается получить только после исключения точек с $R_L < 58$ з.р. и сильно отскакивающих по температуре и по индексу $I_{7/9}$. И зимой, и летом полумесячный зональный прилив, управляемый склонением Луны, обнаруживается в температуре гидроксильного слоя и не обнаруживается в индексе $I_{7/9}$, причем для летней температуры соответствующая амплитуда примерно вдвое меньше и противоположного знака, чем для зимней. Летний полумесячный синодический (если его не интерпретировать как полусуточный) прилив в температуре оказывается втрое слабее зимнего полумесячного синодического и примерно в противофазе с последним, то есть также действующим противоположно. Температура гидроксильного слоя увеличивается зимой и уменьшается

летом при приближении Луны к склонению, равному нулю, и к фазам ~ -45° и 135° (середины между сизигием и предшествующей ему квадратурой). Как и для зимнего сезона, летом в индексе *I*_{7/9} обнаруживается одна значимая гармоника, которую в отличие от зимней полусуточной можно интерпретировать и как полусуточную, и как полумесячную синодическую. Отметим, что при первой из двух интерпретаций амплитуды и фазы зимой и летом близки, но этого факта вряд ли достаточно для гарантии правильности выбора.

Результат для температуры зимнего и летнего гидроксильного слоя может быть сопоставлен с результатом вычисления текущих (скользящих по времени) спектров зимней и летней температуры [Шпынев и др., 2014] на высоте около 85 км по данным радиометра MLS (спутник Аура). Скользящие спектры имеют значительный эпизодически возникающий локальный максимум вблизи полумесячного периода. Из четырех проанализированных лет такой максимум проявляется в 2008 и 2009 г., причем летом, как и в данной работе, заметно слабее, чем зимой. Частотный пик приходится явно на полумесячный зональный прилив (13.66 сут), а не полумесячный синодический (14.77 сут.). Это не вполне согласуется с нашими результатами: для зимней гидроксильной температуры, как уже указывалось, полумесячный зональный прилив, и полумесячный синодический прилив дают примерно одинаковую амплитуду колебаний, ~2.5 К (см. табл.3). Однако следует отметить, что методика анализа основана на различных подходах: оценка регулярных синусоид неизменной фазовой привязки к абсолютной величине склонения в нашей работе и рассмотрение коротких цугов колебаний, демонстрируемых текущими спектрами Шпынева и др. [2014].

6.3. Яркость серебристых облаков

Полусуточные /полумесячные приливы в характеристиках серебристых облаков исследуются так же, как и в предыдущем пункте. Ниже приводится табл.5 результатов для серебристых облаков, аналогичная табл. 4. Полумесячный синодический (или полусуточный) прилив оказывается значимым с вероятностью более 90% и для логарифма максимальной ночной яркости, причем реакция яркости МСО на фазу Луны идет приблизительно в противофазе с реакцией температуры гидроксильного слоя (увеличение температуры сопровождается уменьшением яркости облаков). Влияние зонального прилива на яркость МСО оказывается не значимым, хотя знак этого влияния и здесь противоположен знаку влияния на температуру.

7. Выводы

 Впервые предпринят одновременный поиск и получены согласованные результаты по лунным полумесячным зональным приливам, лунным полумесячным синодическим и лунным полусуточным приливам в данных по яркости серебристых облаков, данных по летнему и зимнему гидроксильному излучению на основе многомерного регрессионного анализа.

2. Для зимнего гидроксильного слоя различные гармоники лунного приливного потенциала статистически значимы для гидроксильной температуры *T*_{OH} и отношения *I*_{7/9} интенсивностей двух полос гидроксила. В первой из них обнаружено влияние полумесячного зонального и полумесячного синодического приливов. Отношение *I*_{7/9} показывает присутствие лунного полусуточного прилива.

 Те же гармоники статистически значимы (с несколько меньшей вероятностью, 90%) и для летнего гидроксильного слоя, при этом полумесячный синодический и полусуточный прилив не различимы (являются взаимно-маскирующими гармониками).

4. Для летнего гидроксильного слоя наиболее правдоподобна такая интерпретация взаимно-маскирующих гармоник, которая совпадает с результатами для зимнего гидроксильного слоя. При этом температура гидроксильного слоя увеличивается зимой и уменьшается летом при приближении Луны к нулю склонения и к фазам ~ -45° и 135° (середина между сизигием и предшествующей ему квадратурой).

 Яркость серебристых облаков показывает лишь одну значимую лунную гармонику – полумесячный синодический либо полусуточный прилив. Этот сигнал оказывается приблизительно противофазным с температурой гидроксильного слоя
 уменьшению температуры соответствуют более яркие МСО, что вполне естественно, поскольку меньшие температуры соответствуют большим относительным влажностям окружающего воздуха, способствующим конденсации, что ведет к росту ледяных частиц и, соответственно, яркости облаков.

6. Устойчивые статистически значимые результаты удалось получить только после исключения точек с малым расстоянием до Луны (меньшим 58 з.р.), где плотность числа точек подвержена сильным полумесячным вариациям, а также экстремально больших и малых значений исследуемых величин.

7. Впервые рассмотрены два возможных механизма возникновения лунного полумесячного синодического колебания – через полумесячную синодическую модуляцию расстояния от Земли до Луны и через демодуляцию полумесячной огибающей сигнала с полусуточной несущей частотой. На основе статистического анализа температуры гидроксильного слоя показано, что первый из этих механизмов не дает заметного вклада в

результат. Указан вероятный путь осуществления демодуляции – квадратичная демодуляция (возведение в квадрат суперпозиции исходных синусоид).

Кроме исследованных полумесячных и полусуточных приливов, изучаемые временные ряды содержат также лунные суточные и месячные приливы, влияние которых будет исследовано в другой работе.

Исследование выполнено при поддержке гранта РФФИ №15-05-04975а.

СПИСОК ЛИТЕРАТУРЫ

—Кремер Н.Ш. Теория вероятностей и математическая статистика: учебник для вузов. М.:Юнити-Дана. 573 с. 2004.

—Кропоткина Е.П., Шефов Н.Н. Влияние лунных приливов на вероятность появления серебристых облаков // Известия АН СССР. ФАО. Т. 11. № 11. С. 1179-1181. 1975.

-*Перминов В.И., Семенов А.И., Медведева И.В., Перцев Н.Н.* Изменчивость температуры в области мезопаузы по наблюдениям гидроксильного излучения на средних широтах // Геомагнетизм и Аэрономия. Т. 54. № 2. С. 246-256. 2014.

—Ромейко В.А., Перцев Н.Н., Далин П.А. Многолетние наблюдения серебристых облаков в Москве: база данных и статистический анализ // Геомагнетизм и Аэрономия. Т. 42. № 5. С. 702-707. 2002.

—Семенов А.И., Баканас В.В., Перминов В.И., Железнов Ю.А., Хомич В.Ю. Спектр излучения ночной верхней атмосферы Земли в ближней инфракрасной области // Геомагнетизм и аэрономия. Т. 42. № 3. С. 407–414. 2002.

—Сидоренков Н.С. Атмосферные процессы и вращение Земли. С-Пб.: Гидрометеоиздат. 380 с. 2002.

-Чепмен С., Линдзен Р. Атмосферные приливы. М.: Мир. 293 с. 1972.

—Шефов Н.Н. Некоторые свойства гидроксильного излучения/ Полярные сияния и свечение ночного неба. № 13. Ред. Красовский В.И. М.: Наука. С. 37-43. 1967.

—Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы – индикатор ее структуры и динамики. М.: ГЕОС. 740 с. 2006.

-Шпынев Б.Г., Ойнац А.В., Лебедев В.П., Черниговская М. А., Орлов И.И., Белинская А. Ю., Грехов О. М. Проявление гравитационных приливов и планетарных волн в долговременных вариациях геофизических параметров // Геомагнетизм и Аэрономия. Т. 54. № 4. С. 540-552 2014.

-Dalin P. A., Pertsev N. N., Romejko V. A. Significance of Lunar Impact on Noctilucent Clouds // J. Atmos. Solar-Terr. Phys. V. 68. № 14. P. 1653-1663. 2006.

—Egedal J. The tides of the upper atmosphere and the heights of meteors // Nature. V.124. № 3137. P. 913-914. 1929.

-Gadsden, M., Schröder W. Noctilucent clouds. Berlin, Heidelberg, New York.:Springer-Verlag, 165 p. 1989.

—Howard, L. The climate of London, deduced from meteorological observations, made at different places in the neighbourhood of the metropolis, V. 2. London: Harvey and Darton, 163 p., 1820. *—Kopp M., Gerding M., Höffner J., Lübken F.-J.* Tidal signatures in temperatures derived from day-light lidar soundings above Kühlungsborn (54°N, 12°E)// J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2014.09.002, 2015.

—Montenbruck O., Pfleger T. Astronomy on the personal computer. Berlin, Heidelberg: Springer-Verlag, 300 p. 2000.

—Pertsev N. N., Perminov V. I., Lowe R. P., DeSerranno R. Effect of Vertical Motion of the hydroxyl Nightglow Layer on the observed variation of rotational temperature // International Journal of Geomagnetism and Aeronomy. V.1. № 3, P. 259-265. 1999.

—Pertsev N., Dalin P., Romejko V. A lunar signal in summer nighttime tropospheric cloudiness and in Noctilucent clouds/ Proc. 18th ESA Symposium on 'European Rocket and Balloon Programmes and Related Research', Visby, Sweden, 3–7 June 2007 (ESA SP-647), P. 589-592. 2007.

—Pertsev N., Perminov V. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia // Annales Geophysicae. V. 26. № 5. P. 1049-1056. 2008. *—Pertsev N., Dalin P.* Lunar semimonthly signal in cloudiness: lunar-phase or lunar-declination effect? // J. Atmos. Solar-Terr. Phys. 72, doi:10.1016/j.jastp.2010.03.013, 2010.

—Pertsev N., P. Dalin, V. Perminov, V. Romejko, A. Dubietis, R. Balčiunas, K. Černis, M. Zalcik. Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series // Earth, Planets and Space. 66, doi:10.1186/1880-5981-66-98, 2014 Таблица 1. Коэффициенты линейной регрессии для оценки лунного вклада в возмущения измеряемых характеристик зимнего гидроксильного слоя области мезопаузы.

Функции →	$(T_{OH})_{\rm A}$	(<i>T</i> _{OH}) _В	$(I_{7/9})_{\rm A}$
Аргументы↓	СтО=9.51	СтО=9.50	СтО=0.30
Полумес. Зональный	KP=2±7	KP=2±7	KP=-0.3±0.2
$\sin^2(\delta_L)$			
Полумес. Синод.	KP=0.9±0.7	KP=0.8±0.7	KP=0.05±0.02
$\cos(2v - 2 \cdot Fl)$	<i>F1</i> =86°	<i>F1</i> =85°	<i>F1</i> =–44°
	KP=0.0±0.6	KP=0.0±0.6	KP=0.00±0.02
$\sin(2v - 2Fl)$			
Полусуточный	KP=0.2±0.6	KP=0.3±0.6	KP=0.01±0.02
$\cos(4\pi \mathrm{LT}_{L}/24h-2\cdot F2)$			
	KP=0.0±0.6	KP=0.0±0.6	KP=0.00±0.02
$\sin(4\pi \mathrm{LT}_{L}/24h-2\cdot F2)$			

Примечание: Ошибки КР соответствуют вероятности 95%. Значимые с этой вероятностью КР выделены. Число точек - 2139. Параметры регрессионного анализа, - *F1* для полумесячного синодического колебания, *F2* для полусуточного колебания,- управляют положением максимума гармоник $\cos(2v - 2 \cdot F1)$ или $\cos(4\pi \text{LT}_{L}/24h - 2 \cdot F2)$ на оси v или LT_{L} . Для значимых гармоник значения *F1* и/или *F2*, дающие наилучшую регрессию, указаны.

Таблица 2. То же самое, но для укороченной базы данных (точки с *R*_L<58 з.р. исключены).

Функции →	$(T_{OH})_{\rm A}$	$(T_{OH})_{\rm B}$	$(I_{7/9})_{\rm A}$
Аргументы↓	СтО=9.44	СтО=9.44	СтО=0.30
Полумес. Зональный	$KP = -18 \pm 8$	KP= -19±8	KP=-0.257±0.254
$\sin^2(\delta_L)$			
Полумес. Синод.	KP=1.9±0.7	KP=1.9±0.7	KP=0.026±0.023
$\cos(2v - 2 \cdot F1)$	<i>F1</i> =–45°	<i>F1</i> =–43°	<i>F1</i> =3°
	KP=0.0±0.7	KP=0.0±0.7	KP=0.00±0.02
$\sin(2v - 2Fl)$			
Полусуточный	KP=0.1±0.6	KP=0.2±0.6	KP=0.017±0.020
$\cos(4\pi \mathrm{LT}_{I}/24h-2\cdot F2)$			<i>F2</i> =–47°
	KP=0.0±0.6	KP=0.0±0.6	KP=0.00±0.02
$\sin(4\pi \mathrm{LT}_{L}/24h-2\cdot F2)$			

Примечание: Число точек - 1738.

Таблица 3. То же самое, но дополнительно исключены точки, отклонение которых от среднего превышает 3 СтО.

Функции →	$(T_{OH})_{\rm A}$	$(T_{OH})_{\rm B}$	(<i>I</i> _{7/9}) _A
Аргументы↓	СтО=9.44	СтО=9.44	СтО=0.30
Полумес. Зональный	$KP = -20 \pm 8$	$KP = -24 \pm 8$	KP=-0.1±0.2
$\sin^2(\delta_L)$			
Полумес. Синод.	KP=2.2±0.7	KP=2.5±0.8	KP=-0.17±0.24
$\cos(2v - 2 \cdot Fl)$	<i>F1</i> =-46°	<i>F1</i> =–46°	
	KP=0.0±0.7	KP=0.0±0.7	KP=-0.00±0.18
$\sin(2v - 2Fl)$			
Полусуточный	KP=0.2±0.6	KP=0.3±0.6	KP=0.022±0.018
$\cos(4\pi LT_L/24h-2\cdot F2)$			F2=13°
	KP=0.0±0.6	KP=0.0±0.6	KP=0.00±0.02
$\sin(4\pi \mathrm{LT}_{L}/24h-2\cdot F2)$			

Примечание: Число точек меняется в зависимости от столбца и заключено в пределах 1724-1731. Таблица 4. Коэффициенты линейной регрессии для оценки лунного вклада в возмущения измеряемых характеристик летнего гидроксильного слоя области мезопаузы.

Функции →	(T _{OH}) _A	(T _{OH}) _B	(I _{7/9}) _A
Аргументы↓	СтО=5.7	СтО=5.7	СтО=0.26
Полумес. Зональный	KP=11±9	KP=11±9	KP=-0.2±0.3
$\sin^2(\delta_L)$			
Полумес. Синод.	KP=0.78±0.80	KP=0.78±0.77	KP=0.034±0.030
$\cos(2v - 2 \cdot F)$	F=56°	<i>F</i> =50°	<i>F</i> =10°
	KP=0.0±0.8	KP=0.0±0.8	KP=0.00±0.03
$\sin(2v - 2 \cdot F)$			

Примечание: Ошибки КР соответствуют вероятности 90%. Значимые с этой вероятностью КР выделены. Исключены точки с *R*_L<58 з.р. и для каждой из исследуемых функций дополнительно исключены точки, отклонение которых от среднего превышает 2 СтО. Число точек меняется в зависимости от столбца и заключено в пределах 324-330.

Логарифм (натур.) максимальной	
ночной яркости в баллах	
СтО=0.52	
$KP = -0.5 \pm 1.0$	
KP=0.091±0.086	
$F = -24^{\circ}$	
KP=0.00±0.07	

Таблица 5. Коэффициенты линейной регрессии для оценки лунного вклада в возмущения яркости серебристых облаков.

Примечание: Ошибки КР соответствуют вероятности 90%. Значимые с этой вероятностью КР выделены. Исключены точки с *R*_L<58.15 з.р. и, кроме того, исключены все точки с очень малой (<1 балла) максимальной ночной яркостью. Число точек 490.

Рис. 1. Статистическая взаимозависимость между двумя аргументами, LT_L и v, описывающими положение Луны, на примере многолетних (2000-2013) гидроксильных наблюдений на ЗНС, в летний(а) и зимний (б) сезоны. Каждая точка соответствует продолжительности измерений ±0.5 ч от выбранного момента времени, который в летний сезон совпадал с местной полночью, а в зимний сезон принимал разные значения до ±6 ч от полуночи.

Рис. 2. Статистическая взаимозависимость между лунной фазой и лунным склонением для летнего сезона. Рисунок построен для тех же данных, что на рис. 1(а).

Рис. 3. Статистическая взаимозависимость между расстоянием от Земли до Луны и лунной фазой (а)/ лунным склонением (б) для летнего сезона. Рисунок перестроен для тех же данных, что на рис. 1.(а). Расстояние до Луны в диапазоне 58-64 земных радиусов не зависит ни от фазы, ни от склонения Луны. Однако, когда Луна близка к перигею (56-58 з.р.), расстояние до Луны сильно зависит как от фазы, так и от склонения Луны [Dalin et al., 2006].

Рис. 4. То же самое, что на рис. 3, но для зимнего сезона. Разница между точками на рис. 3 и черточками на этом рисунке соответствует разнице в продолжительности измерений (длине ночи) во время летних и зимних гидроксильных измерений.