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Abstract. A lot of discrete configurations for the four-
wave nonlinear interaction processes have been calculated
and tested by the method proposed earlier in the frame of
the concept of Fast Discrete Interaction Approximation to the
Hasselmann’s kinetic integral (Polnikov and Farina, 2002). It
was found that there are several simple configurations, which
are more efficient than the one proposed originally in Has-
selmann et al. (1985). Finally, the optimal multiple Discrete
Interaction Approximation (DIA) to the kinetic integral for
deep-water waves was found. Wave spectrum features have
been intercompared for a number of different configurations
of DIA and applied to a long-time solution of kinetic equa-
tion. On the basis of this intercomparison the better effi-
ciency of the configurations proposed was confirmed. Cer-
tain recommendations were given for implementation of new
approximations to the wave forecast practice.

1 Introduction

It is well known that the nonlinear wave-wave interactions
play a principally important role in the wind waves evolution
(Young and van Vledder, 1993; Komen et al., 1994). Under
some constraints they are described by the so-called four-
wave kinetic integral of the form

∂N(k4)

∂t
≡ TN (k)

= 4π

∫
dk1

∫
dk2

∫
dk3M

2(k1, k2, k3, k4
)

×

[
N

(
k1

)
N

(
k2

)
N

(
k3

)
+ N

(
k4

)
−N

(
k3

)
N

(
k4

)
N

(
k1

)
+ N

(
k2

)]
×δ

(
σ
(
k1

)
+ σ

(
k2

)
− σ

(
k3

)
− σ

(
k4

))
δ
(
k1 + k2 − k3 − k4

)
(1)

Correspondence to:V. G. Polnikov
(polnikov@cptec.inpe.br; polnikov@mail.ru)

derived for the first time by Hasselmann (1962). In Eq. (1)
N(k1) is the wave action spectrum,k1(i = 1, 2, 3, 4) are the
wave vectors of interacting waves,σi ≡ σ(k1) are the corre-
sponding angular frequencies of the waves due to dispersion
relation,TN (k) is the nonlinear transfer of wave action, and
M(...) are the matrix elements describing an intensity of in-
teraction of four waves. In this paper the relation

σ(k) = (gk)1/2 (2)

will be used, which is valid for the ocean surface gravity
waves (g is the gravity acceleration).

The delta-functions in Eq. (1) assure that the four interact-
ing waves should meet the following resonance conditions

k1 + k2 = k3 + k4 , (3)

σ1 + σ2 = σ3 + σ4 . (4)

A joint solution of Eqs. (2–4) defines a resonance 3-D-
surface in the 8-dimensionalk-space. In a discrete repre-
sentation, this surface gives rise to a set of 4–wave config-
urations for wave vectors contributing to the real nonlinear
transfer of wave action (and energy as well) among waves.

Due to the very complicated form of kinetic integral in
Eq. (1), in practical wind wave models this integral is substi-
tuted by some kind of approximation. At present, this point is
very well elaborated, and the only problem is to find the opti-
mal approximation to the kinetic integral, which has the best
balance of accuracy and speed of calculations. This prob-
lem was considered in detail in our previous paper (Polnikov
and Farina, 2002), where one can find a good list of proper
references.1

On the basis of specially constructed mathematical mea-
sures and definitions (which is called PF-methodic), the au-
thors of PF have shown that among different modern approx-
imations of the kinetic integral the best one is the so-called
Discrete Interaction Approximation (DIA), proposed in Has-
selmann et al. (1985). We will not dwell on the DIA, as far as
it is well described in the literature (for example, see Komen

1Hereafter it is referred to as PF
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Fig. 1. Visual representation of the configuration used in DIA. Con-
tour lines correspond to the possible end points of interacting vec-
tors permitted by Eqs. (3) and (4).

et al., 1994; Hashimoto and Kawagushi, 2001; Van Vledder,
2001; PF). But we mention that the original DIA requests
some interpolation procedures for the spectrum function un-
der the integral in Eq. (1), provided by a mismatch of the
integration grid nodes and location of some interacting wave
vectors used in the DIA configuration. In PF the concept of
a fast DIA (FDIA) was proposed, which does not need the
interpolation procedure. The FDIA concept permits one to
increase several times (at least two times) the speed of the
calculation in the DIA, preserving the same accuracy as if
the integration grid is rather fine.

In this paper the FDIA concept is used in the frame of
PF-methodic with the aim to find the optimal approximation
to the kinetic integral. The outline of the paper is the fol-
lowing. In Sect. 2 the FDIA concept is described briefly.
The principal formulas of the PF-methodic are presented in
Sect. 3. The set of configurations investigated is described
and classified in Sect. 4. Results of configuration testing by
the PF-methodic are given in Sect. 5. In Sect. 6 the long-term
spectrum evolution features are intercompared for different
approximations of the kinetic equation Eq. (1). Section 7 is
devoted to conclusions and recommendations.

2 The concept of the fast Discrete Interaction
Approximation

As it was shown in PF, all modern, theoretically grounded
and effective approximations are based on using in the six-
fold integral (1) only the interacting wave-wave configura-
tions located at the singular sub-surface of the 3-D-resonance
surface defined by resonance conditions (3) and (4). An ex-
ample of such a configuration used in the original DIA (Has-
selmann et al., 1985) is shown in Fig. 1.

The main idea of FDIA is to use such types configurations,
which are adjusted to the integration grid for the integral in

Eq. (1). Thus, first of all, one should introduce the principal
parameters of the grid. Then, the features of configurations
in FDIA could be described.

An integration grid for the kinetic integral will be con-
sidered in the polar coordinates, where each of the inter-
acting wave vectorki(i = 1, 2, 3, 4) is represented by the
frequency-angular point(σi, θi). In our case, the integration
grid is given by the formulas

σ(I) = σ0 · eI−1 (0 ≤ I ≤ N) ,

θ(J ) = −π + J · (2π/1θ) (0 ≤ J ≤ M) . (5)

Thus, parameters of the grid are as follows: the lowest fre-
quency,σ0; the frequency exponential increment,e; the max-
imum number of frequencies,N ; the angle resolution in ra-
dians,1θ ; and the maximum number of angles,M. To our
aims, the principal parameters aree and1θ , as far as they de-
fine the resolution of the grid. The numbersN andM should
be rather large (several tens), but for the concept under con-
sideration their explicit values are not principal. Note only
that the FDIA concept is valid for the rather fine grid when

e ≤ 1.1 and 1θ ≤ π/10 . (6)

Everywhere below restriction (6) should be met. Particularly,
in our further consideration, the resolution parameters have
values

e = 1.05 and 1θ ≤ π/18 , (7)

what is related to the ‘standard’ integration grid introduced
in PF for the exact calculation of the kinetic integral (1).

In the FDIA the basic (simple) configuration is described
by the following ratios:

1) k4 = k , (8a)

where the current wave vectork is located at the grid node
and represented in the polar coordinates by the proper fre-
quencyσ and angleθ ;

2) k3 = k+ , (8b)

wherek+ is represented byσ3 = σ(1 + α34) andθ3 = θ +

1θ34;

3) k1 ≈ k2 ≈ (k4 + k3)/2 ≡ ka , (8c)

whereka is represented byσa andθa = θ + 1θa4.
Thus, we have two main parameters of configuration: the

frequency incrementα34, defining the value ofσ3, and the
proper angular increment1θ34, defining the angle between
vectorsk4 andk3. By varying these parameters, one can vary
the configuration as a whole (including the values ofσa and
θa) due to Eq. (3).

The main differences between the configurations used in
FDIA and in the original DIA are as follows:

(a) all wave vectorsk1, k2, k3, andk4 should be allocated
at the nodes of the integration grid;
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(b) vectorsk1 andk2 may be unequal, i.e. they may have
some (but small) discrepancies both in values and in di-
rections;

(c) the resonance conditions (3) and (4) may be met rather
approximately than exactly.

The main common feature of all the configurations is that
they are allocated in the vicinity of the ‘figure-of-eight’ in
the k-space (see, Fig. 1). This requirement is expressed by
the following ratios (Polnikov, 1989):

ka = σ 2
a /2 , (9)

where

ka =
[
σ 4

+ σ 4
3 + 2σ 2σ 2

3 cos
(
1θ34

)]1/2
, (10)

and

σa = σ + σ3 . (11)

Equations (9)–(11) determine the value of increment1θ34,
for the givenσ andσ3. After that, the expression for1θa4 is
deduced from the resonant condition (3):

1θa4 = arctg

[
σ 2

3 sin
(
1θ34

)
σ 2

3 cos
(
1θ34

)
+ σ 2

]
. (12)

To fix the FDIA configuration, it needs to define several
integer values corresponding to requirement (a) mentioned
above (allocation of the vectors on the grid). This require-
ment can be expressed by the following equations:

σ3/σ = em3, σ1/σ = em1, σ2/σ = em2 , (13a)

and

Int (1θ34/1θ) = n3 , Int (1θa4/1θ) = na . (13b)

Here,m1, m2, n3, andna are the integer values to be found
for any given integerm3; and the function Int(. . . ) repre-
sents the integer number which is nearest to the argument.

Requirement (b) mentioned above (inequality of vectors
k1 andk2) means that one can use the following choice for
modulus parameters of the vectorsk1 andk2:

m1 = m2 or m1 = m2 ± 1 , (14)

and the corresponding choice for the angle parameters of the
vectorsk1 andk2:

n2, n3 = na or n2, n3 = na ± 1 , (15)

wheren2, n3 are the angular parameters of the vectorsk1
andk2 corresponding to Eqs. (8c) and (13b).

Hereby the algorithm of the FDIA configuration calcula-
tions is totally described. The set of configurations under
investigation will be presented in Sect. 3.

3 PF-methodic of approximation efficiency estimation

The term ‘efficiency of approximation’ was specified in de-
tail in PF. It is based on the rigorous formula for the averaged
relative error of approximation (ARE),< εrel >, and phe-
nomenological formula for the efficiency,Eff . In turn, the
valueεrel (defined below) is named as a mean relative error
(MRE). There are two situations, and the formulas for them
are as follows.

For a simple FDIA configuration2

Eff1 =
(

< εrel >
)−2

. (16)

In the case of a multiple FDIA configuration, the efficiency
is estimated by the formula

Eff1 =
(

< εrel >
)−2(

Nc

)−RP
, (17)

whereNc is the number of simple configurations in a multi-
ple one, andRP is the so-called relative part of CPU time,
taken by the nonlinear sub-routine in calculations by certain
numerical model as a whole (for details, see PF). To our aims,
we can accept the following estimations:

RP ∼= 0.3 for Nc = 2 (18a)

and

RP ∼= 0.35 for Nc = 3 . (18b)

For the higher values ofNc, estimation ofRP requires a
use of some software mentioned in the referenced paper. At
present it seems that this point is not so important.

For a certain wave energy spectrum,S(σ, θ), the rela-
tive error, εrel, is estimated on the basis of comparison of
the approximated calculation of the 2-D nonlinear transfer,
Tap(σ, θ), and the ‘exact’ calculation of the same transfer,
Tex(σ, θ), for the same wave spectrum at the same ‘standard’
integration grid (see PF). Herewith, both magnitudes should
be expressed in the same dimensional units, whilst the val-
uesTap(σ, θ) should be adjusted to the valuesTex(σ, θ) in
accordance to the equation∫ [

Tex(σ, θ) − C
(s)
ad Tap(σ, θ)

]2
dσ dθ = min , (19)

whereC
(s)
ad is the adjusting coefficient, and super-index(S)

means the dependence of coefficient on a spectrum shape
(hereafter this index is omitted). Eventually, in PF-methodic
the following estimation of the mean relative error (MRE),
εrel, was proposed:

εrel
(
�ε

)
=


∫
�ε

∣∣∣Tex (σ,θ)−Tap(σ,θ)

Tex (σ,θ)

∣∣∣ dσ dθ∫
�ε

dσ dθ

 . (20)

Here,�ε is the fixed part of the integration frequency-angle
space used for the estimation ofεrel. In the present work�ε

2More clarification for the classification of configurations will
be done in Sect. 4.
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Table 1. A set of parameters for spectra used in calculations

No. fp1 , θp1 , γ1 S1 R2 fp2 , θp2 , γ2 S2
of run conv.un degrees conv.un degrees

1 1 0 1 2 0
2 1 0 1 8 0
3 1 0 3.3 2 0
4 1 0 3.3 12 0
5 1 0 1 8 0.4 2 0 3.3 4
6 1 0 1 8 1.2 2 0 3.3 4
7 1 0 1 8 1.2 2 -60 3.3 4
8 1(swell) 0 3 8 1.2 2 0 3.3 4
9 1(swell) 0 3 8 0.4 2 0 3.3 4

Note: ‘(swell) in the first column means that the first-mode spectrum has the tail
of the form:S1(f ) ∝ f −10.

is corresponding to the 10%–threshold domain defined by the
ratio

�ε = �10% ∈ |Tex(f, θ)| ≥ 0.1R , (21)

where

R = T +
− T − (22)

andT + is the positive extremum of the exact 2-D nonlinear
transfer, whilstT − is the negative one.

Finally, the mean relative error,< εrel >, is estimated as
a simple average of the valuesεrel obtained for the so-called
representative set of spectrum shapes.

According to PF, for the nonlinear transfer calculations the
following two-mode spectrum representation has been used3

S(f, θ) = S1(f, θ, fp1, θp1, γ1, s1)

+ R2 · S2(f, θ, fp2, θp2, γ21, s2) , (23)

where each of the modes has a typicalJONSWAPspectrum
shape of the kind

S(f, θ, fp, θp, γ, s) = αf −5 exp
(
−1.25(fp/f )4

)
·γ

exp
(
−(f −fp)2/0.01f 2

p

)
J 9(s, θ, θp) . (24)

In Eq. (24) the coefficientα is taken to be equal to 1, and the
angular spreading function is of the form

9(s, θ, θp) = Is coss(θ − θp) (25)

with normalization coefficientIs taken to be equal to 1, for
simplicity (as far as the normalized values of the nonlinear
transfer is used for comparison). CoefficientR2 is respon-
sible for the changing relative intensities of the modes. The
extended set of parameters, defining the representative set of
the spectra used in our investigations, is presented in Table 1.

3In the energy spectrum representation we prefer to use the
cyclic frequency,f = σ/2π , instead of the angular one,σ .

Note that all calculations are made on the standard in-
tegration grid given by ratios (5) with parameters (7) and
f0 = σ0/2π = 0.7462, N = 40, M = 35. The approx-
imated nonlinear transfer for the energy spectrumS(σ, θ)

is defined by the typical DIA formulas (Hasselmann et al.,
1985):

∂S(σ, θ)

∂t
= I (k, k+, k1, k2, ) , (26a)

∂S(σ3, θ3)

∂t
= I (k, k+, k1, k2, ) , (26b)

∂S(σ1, θ1)

∂t
= I (k, k+, k1, k2, ) , (26c)

∂S(σ2, θ2)

∂t
= I (k, k+, k1, k2, ) , (26d)

where

I (k, k+, k1, k2, ) = Cσ 11
[
S1S2(S3 + (σ3/σ)4S4)

−S3S4((σ2/σ)4S1 + (σ1/σ)4S2)
]

(27)

andSi = S(σi, θi). The fitting constantC in Eq. (27) is taken
to be equal to 1, as far as it finally is merged by the adjusting
coefficientCS

ad .

4 A list of the classifications of configurations studied

Due to the discrete nature of configuration parameters, there
are, in principle, only a fixed number of configurations that
should be tested. For convenience of further consideration, it
is worthwhile to classify them in the following manner.

First of all, we distinguish two types of FDIA configura-
tion:

– a simple one (a symbol of the configuration type
is S), represented by a set of integer parameters:
m1, m2, m3, n1, n2, n3, andna (see Sect. 2), and

– a multiple one, which is called a construction (a symbol
of the construction isM).
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Table 2. Parameters for the set of simple configurations studied

Index of m3 m1 m2 n3 na n1 n2 1θ34, 1θa4, χ

configuration (general) (general) (general) degree degree

S1 8 4 5 3 2 2 2 33.2 22.9 4.4
S2* -”- 4 5 -”- -”- 3 2 -”- -”- -”-
S3 9 5 5 4 3 3 3 37.8 27.0 5.0
S4* -”- 4 5 -”- -”- 3 2 -”- -”- -”-
S5 10 5 6 4 3 3 3 42.7 31.4 5.6

S6 (or. DIA) -”- 6 6 -”- -”- 3 3 -”- -”- -”-
S7* -”- 6 6 -”- -”- 4 3 -”- -”- -”-
S8* 11 6 7 5 4 4 3 47.5 36.1 6.2
S9 -”- 6 6 -”- -”- 4 4 -”- -”- -”-
S10 12 7 7 5 4 4 4 53.1 41.3 6.9
S11 -”- 6 7 -”- -”- 4 4 -”- -”- -”-

Notes. 1. Index of configuration includes the symbol of the configuration type (S or M) and the
conventional number of configuration.

2. Configuration S6 is marked as the closest one to the original DIA configuration.
3. Parametersm3, n3, na are marked as ‘general’ as far asm3 is an independent parameter,

andn3 andna are directly defined by formulas (13b) and constant for a givenm3.
4. Super-index ‘*’ means that the configuration is indirect.

Note that in the general case, theM-type constructions in-
clude severalS-type configurations with different weights,
w1, w2 and so on, which are used instead of factorC in
Eq. (27).

In turn, the simple configurations can be shared by sub-
groups: (a) direct ones, i.e. configurations with equal values
of anglesθ1 andθ2 (equaln1 andn2); (b) indirect configu-
rations: ones with unequal values of anglesθ1 andθ2. All
M-type constructions can be specified by the number ofS-
type configurations used in the construction. But it seems
that this specification is principally not so.

An experience of the configuration testing shows that the
direct configurations conserve total energy, wave action and
momentum rather well (conservation errors are less, or of the
order of 5–10%), whilst the nonconservativity of the indirect
ones is remarkable (especially for the momentum).4 But, as
far as the specially proposed formulas that are used for ap-
proximation efficiency estimation, conservative features do
not play any significant role in our study. Moreover, for some
spectrum shapes, the indirect configurations are more effi-
cient than the direct ones.

Analysis of efficiency for different simple configurations
permits one to restrict the range of values for parameterm3,
generating the FDIA configuration as a whole (see below
Sect. 5). Due to this, the variety ofM-type constructions
under consideration is also restricted. The final list of all
types of configurations tested is presented in Tables 2 and 3
for simple and multiple FDIA, respectively.

Note that in Table 2, in addition to the integer val-
uesm1,m2,m3, n1, n2, n3, andna, the exact solutions of

4For the proper formulas, one may refer to PF.

Table 3. The set of multiple constructions studied

Index of Composition
configuration of simple configurations

M1 S1+S3
M2 S1+S4∗

M3 S1+S5
M4 S1+0.6∗S5
M5 S1+S8
M6 S1+0.7∗S8
M7 S1+S10
M8 S1+0.7∗S10
M9 S1+S11
M10 S1+0.7∗S11

Eqs. (10) and (12) and the value

x = ln(σa/2)/ ln(e) (28)

are presented for generality and for clarification of the choice
for the integer parameters.5

In this work we have restricted ourselves byM-type con-
structions, including only twoS-type configurations. The
M-type constructions with composition of three or moreS-
configurations have not been studied in this paper due to the
reasons stated below in Sects. 5 and 6.

5As one can see, the valuex plays the role of the reference value
for the choice ofm1 andm2.
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Fig. 2. Two-dimensional topology for the nonlinear transfer of en-
ergy (run 1).

5 Results and analysis of the FDIA configurations
testing

A typical shape of the ‘exact’ 2-D nonlinear energy transfer,
TS(f, θ), is well known (see, for example, Polnikov, 1989).
For this, there is no need to dwell here on this point. But
to analyze the topology features of approximated transfers,
some proper characteristics ofTS(f, θ) should be introduced.
To do this, we use Fig. 2, reproduced from Polnikov (2002).

Based on Fig. 2 and saying in short, we can state that the
principal qualitative features of the 2-DNl-transfer are as
follows (Polnikov, 1989):

1. existence of main low-frequency positive lobe (absolute
maximum) located along the general spectrum direction
(its value earlier was labeled asT +);

2. existence of main high frequency negative lobe (abso-
lute minimum) located along the general direction (la-
belled asT −);

3. existence of two local high frequency lateral positive
lobes located symmetrically to the general direction.

Each of the lobes is characterized by a proper frequency
and angular width. Values of them, as well as values and
locations of these lobes are important quantitative topology
features of the transfer. But specification of them is not
needed here.

All the features mentioned above take place in the transfers
calculated by FDIA. Herewith, locations and values of the
lobes are very different from the exact ones, which results
in certain relative errors and the efficiency of approximations
under study. By just comparing these features we have found
natural restrictions for the choice of configurations.

The reference values of the average relative error (ARE)
and efficiency was taken as follows:

< εrel >R= 0.48 (28a)

and

Eff1R = 4.3 , (28b)

which are valid to the FDIA configurationS5, correspond-
ing to the original DIA.6 In the frame of our purpose, only
such configurations are of interest which have efficiency pa-
rameters that are better than the ones of the reference con-
figuration. Therefore, the testing results are shown only in
the proper cases. We now consider separately each type of
configurations.

5.1 S-type configurations

Keeping in mind that the original DIA configuration corre-
sponds to the valuem3 ∼= 10, we have started the testing
from small values ofm3, corresponding to the diffusion ap-
proximation (DA) considered earlier (Polnikov, 2002; PF).
It was found that increasingm3 leads to the shifting of both
main positive and main negative lobes to the higher frequen-
cies, saving their location at the general direction. Herewith,
the local lobes, located near the general direction for small
values ofm3, become more intensively expressed in the lat-
eral directions and also shift to the higher frequencies. This
topology change of the 2-DNl-transfer in FDIA permits one
to make a choice of the most effective approximation.

After some attempts it was established that the lowest rea-
sonable value form3 is equal to Eq. (8) (configurationS1).
Some results forS1 are presented in Table 4.

The efficiency parameters of the configuration are as fol-
lows

< εrel >= 43.6 , (29a)

Eff1 = 5.26 . (29b)

Thus, one can see that configurationS1 is more effective by
25% than the reference one,S5.

The further increase inm3 leads to results the best of
which correspond to configurationsS3 andS4. They are pre-
sented in Tables 5 and 6, respectively. Comparative visual
representation of these results is given in Fig. 3.

The efficiency parameters of the last two configurations
are as follows. ForS3 we have:

< εrel >= 44.8 , Eff1 = 4.98 ; (30)

and forS4 to:

< εrel >= 41.4 , Eff1 = 5.82 ; (31)

Thus, these configurations are also more effective than con-
figurationS5, corresponding to the original DIA.

6ConfigurationS6 (closest to the original DIA configuration)
has worthy efficiency features (see PF).
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Table 4. MRE for the FDIA configurationS1

No of run 1 2 3 4 5 6 7 8 9

CoefficientCad 2.99 1.49 2.70 1.68 1.39 1.24 1.70 1.82 1.77

MRE(10%) 36.7 29.8 56.4 35.5 35.9 44.3 56.0 54.0 42.2

Table 5. MRE for the FDIA configurationS3

No of run 1 2 3 4 5 6 7 8 9

CoefficientCad 2.35 1.67 2.94 2.19 1.64 1.47 1.77 2.15 2.79

MRE(10%) 29.8 34.0 57.8 51.4 32.5 41.0 48.5 53.4 55.1

 

 

24

 
 
 
 
 
 

 
 
 

Fig. 3. 

1 2 3 4 5 6 7 8 9

co
nf

 S
10

10

20

30

40

50

60

70

conf S1
conf S3
conf S4

MRE, %

No of run

Fig. 3. Comparative diagrams of mean relative errors for configu-
rationsS1, S3, andS4. In horizontal axes the number of runs from
Table 1 is presented.

A testing of all of the rest of the configurations presented
in Table 2 shows that none of them is more effective than
configurationS5. For this reason, detailed information for
them is not necessary. Nevertheless, they are interesting for
the aim ofM-type constructions.

Now we touch on configuration variety. It is important to
mention that a different configuration is the best for a differ-
ent spectrum shape under consideration. Partially, configu-
ration S1 is the best for runs 3, 4 and 9; configurationS3
is the best for runs 7 and 8; configurationS4 is the best for
runs 2, 5 and 6; and configurationS8∗ is the best for run 1
(mean relative errorεrel = 0.12!). Herewith, configurations
S10 andS11 are more effective thanS8∗, though they are
less effective thanS5. Just this information initiated making
M-type constructions presented in Table 3.

From Table 3 it is evident that allM-constructions are
based on configurationS1. A preference of using this config-
uration is provided by the fact that just the spectrum shapes
for runs 3, 4, and 9 are the most typical for real wind wave

fields. Due to the topology features ofS-type configurations,
described in the beginning of this sub-section, one should ex-
pect that anyM-constructions based onS3 andS4 would be
worth in the case of the combinations of twoS-type config-
urations (at least for runs 3 and 4). It is difficult to make the
same statement for anM-type construction with threeS-con-
figurations. Nevertheless, a hint to such type of conclusion is
seen from the results following below.

5.2 M-type constructions of twoS-configurations

The efficiency parameters for all theM-constructions con-
sidered are presented in Table 7. First of all, it should be
noted that practically for all theM-constructions considered,
average relative errors (ARE) are less than ones for configu-
rationsS1, S3, andS4. Herewith, only the six last construc-
tions have an efficiency better than one forS4. Second, the
last six constructions have values of ARE which are less than
ARE for theM-construction of 3 configurations, presented in
our previous paper (PF). Here, we remind the reader that this
construction (called as 3C-DIA) has the parameters

< εrel >3C−DIA= 0.39 , Eff2 = 4.4 . (32)

Below, this fact will be used in the discussion of the problem
of multiple configuration constructions.

Returning to Table 7 we should note that from a practi-
cal point of view only thoseM-constructions which have
the best accuracy are of the most interest. For this rea-
son the detailed results are given only for the four bestM-
constructions:M5, M6, M7, andM8. In a visual form they
are presented in Fig. 4.

From the results obtained one may conclude the following:

1. There is no exact regularity in the efficiency parameters
of constructions. While changing a form of construc-
tion one may improve the accuracy for some spectral
shapes, but make worth parameters for other shapes. As
a rule, the constructions with rather different values of
parameterm3 for theS-configurations used are the most
effective.
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Table 6. MRE for the FDIA configurationS4

No of run 1 2 3 4 5 6 7 8 9

CoefficientCad 1.63 0.99 1.69 1.51 1.00 0.97 1.23 1.29 1.61

MRE(10%) 32.2 25.1 61.8 40.1 24.8 36.0 50.9 55.6 46.4

Table 7. Efficiency parameters for theM-type constructions studied

Index of construc. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

ARE 0.416 0.406 0.416 0.413 0.351 0.355 0.355 0.356 0.366 0.364

Eff1 5.78 6.07 5.78 5.86 8.12 7.93 7.93 7.89 7.46 7.55

Eff2 4.68 4.91 4.68 4.75 6.57 6.43 6.43 6.39 6.05 6.11

Note. ParametersEff1 are related toEff2 by the ratioEff2 = 0.81Eff2 (see Eq. 17).
So, the values ofEff1 are here given for comparison only.
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Fig. 4. Comparative diagrams of mean relative errors for construc-
tionsM5, M6, M7, andM8. For legend, see Fig. 3.

2. The greatest errors take place for the spectra with sharp
changes in the shape of the frequency and of the angle
(runs 3, 7, 8, and 9). It seems that additional configu-
rations with small values ofm3 could improve the ef-
ficiency of M-construction (though it is not evident at
present).

3. The role of weighting coefficients (for the constructions
usingS-configurations) is not so clear. Partially, con-
structionM5 is the best for runs 1, 5, and 6, whilstM6
is for run 2; constructionM7 is the best for runs 4 and
7, andM8 is for runs 3, 8, and 9.

4. Due to some small difference between parameters for
the last six constructions presented in Table 7, all of
them are more or less equivalent in accuracy and effi-
ciency. Thus, to choose the bestM-construction among
equivalent ones, one needs to specify the preferable
spectral shapes under consideration. For practical pur-
poses, the constructionsM7 and M8 can be recom-

mended, as far as they have the best accuracy for runs 3
and 4.

On the basis of these conclusions, one may make some
speculations about possibly increasing the efficiency of the
approximation by means of increasing the number ofS-con-
figurations in theM-construction. This point will be touched
on below at the end of Sect. 6, after obtaining some experi-
ence in testing the best of configurations found here in the
long-term solution of Eq. (1).

6 Some results for long-term spectrum evolution and
prospective

As it was mentioned earlier in PF, all the estimations of ef-
ficiency presented above are valid only for one time step in
the long-term evolution of the wave spectrum, described by
Eq. (1). In reality, one should estimate the efficiency of ap-
proximation for the long-term evolution as a whole.7 To do
this, one needs to solve Eq. (1) numerically, both in exact and
approximated form for the kinetic integral and to then inter-
compare the features of the spectrum shapes for both cases.
Evidently, this is a very complicated task (see remarks in our
previous paper). Herewith, this task could partially be ful-
filled here by means of intercomparison of some integrated
parameters of the spectrum shape, following from the long-
term solutions of Eq. (1) for different kinds of approxima-
tions.

First of all, we cite the main results of the ‘exact’ numer-
ical solution of Eq. (1), obtained in Polnikov (1990) and re-
cently confirmed in Lavrenov and Polnikov (2001). They are
as follows.

On the time scales of the order ofτ ≥ (105
− 106) f −1

p (0)

(wherefp(0) is the peak frequency of initial spectrum), the

7So-called long-term evolution efficiency (PF).
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Table 8. Typical spectrum shape parameters for the self-similar
solutions of Eq. (1), obtained in different approximations

Type of Spectrum shape parameter

approximation n δ Ap

EXACT 7 ± 1 0.25± 0.03 1.05± 0.05

Original DIA 10 ± 1 0.30± 0.05 0.65± 0.05

S-configuration 9 ± 0.5 0.28± 0.03 0.85± 0.1

M-construction 8.5 ± 0.5 0.25± 0.03 0.9 ± 0.1

ZPA 4.3 ± 0.1 0.75± 0.1 1.1 ± 0.1

Note. Results for Zakharov–Pushkarev diffusionApproximation
(ZPA) are given from the paper by Polnikov (2002).

spectrum takes a universal (self-similar) shape, depending
slightly on an initial spectral shape. Therefore, one may esti-
mate the long-term efficiency of any approximation by means
of comparison of the proper representative spectral parame-
ters for solutions of Eq. (1) at the evolution timet > τ .

In Polnikov (1990) the following features for the self-
similar spectral shape were revealed:

(a) the one-dimensional spectrum,S(f ), has a tail fall law
of the kindS(f ) ∝ f −n with the valuen = 7± 1 in the
frequency intervalfp < f < 1.5fp;

(b) the frequency width,δ, defined by the relationship

δ =

∫
S(f )df/S(fp)fp , (33)

has a small varying value of the order ofδ = 0.25 ±

0.03;

(c) the angle narrowness at the peak frequency,Ap, defined
with respect to the general wave propagation direction,
θp, by the relationship

A(fp) ≡ Ap = S(fp, θp)/

∫
S(fp, θ)dθ , (34)

has a small varying value of the order ofAp = 1.05±

0.05.

Thus, the criterion of the approximation quality is an extent
of the proper parameters’ closeness to the values given above
at the evolution timet > τ .

Instead of dwelling on the technical details of the numer-
ical solution for Eq. (1), let us discuss some generalized re-
sults for the mentioned parameters, found for the long-term
evolution in different approximations. They are presented in
Table 8.

The principal long-term features of the approximations are
as follows:

1. Original DIA yields too strong a fall of the spectrum
tail at higher frequencies, compensated by a rather wide
angular spreading in the peak frequency domain;

2. FDIA with theS-configurations gives intermediate re-
sult: a more slower tail fall with a more narrower peak
frequency domain;

3. FDIA with anM-construction gives the shape of a self-
similar spectrum with parameters better corresponding
to the exact solution (with respect to FDIA withS-con-
figuration).

In contrary to FDIA, the Zakharov-Pushkarev diffusion
Approximation (ZPA), proposed in Zakharov and Pushkarev
(1999) and corresponding to the configuration8

k1 ∼= k2 ∼= k3 ∼= k4 , (35)

gives the spectrum shape with too slow a tail fall, which is
compensated by the extremely narrow angular spreading at
the peak frequency domain (for details, see Polnikov, 2002).

Finally, one may conclude that FDIA withM-construc-
tions andS-configurations really has a long-term efficiency
that is better than the efficiency of the original DIA. Despite
the rather small difference for spectrum shape parameters
found for these approximations, the results obtained confirm
our previous conclusion about the better efficiency of the ap-
proximations constructed. Moreover, it seems that the effi-
ciency of FDIA could be enhanced, if one includes into the
M-construction some additionalS-configurations with small
values of configuration parameterm3 (which are correspond-
ing to configuration (35)). This work could be made in the
future.

For the sake of the paper let us say several words about
possible future work. The topology basis for making better
M-constructions is related to the better reproduction of loca-
tions and values for main positive and negatives lobes of the
2-D NL-transfer (see, Fig. 2). From a first glance, it seems
that a simple addition of anyS-configuration should lead to
improving the features ofM-constructions. But the results
of testing show that this is not true (compare efficiency pa-
rameters forM7(S1 + S10) in Table 7 to the one for 3C-
DIA in Eq. (32); the latter corresponds toM-construction
(S1+S5+S10). It is evident that the weighting coefficients
here play the key role. The choice of the coefficients is very
cumbersome work.

Moreover, the optimal number ofS-configurations in the
M-construction is not known. It should not be so great as
to restrict the time of the one-step calculation and the value
of RP (see Eq. 17), yet not so small as to provide a proper
decreasing ARE. All these details make for a rather un-
clear prospective of seeking an effectiveM-construction with
three or moreS-configurations. For this reason this point was
not elaborated in the present paper.

8For details, see PF.
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7 Conclusions and recommendations

In this paper the main ideas of the Fast Discrete Interaction
Approximation (FDIA) to the kinetic integral, proposed ear-
lier in PF, were elaborated and clarified. Classification of
the discrete configurations was given, and many of examples
of simple (S-type) and multiple (M-type) FDIA have been
tested in the frame of the PF method, with the aim of choos-
ing the optimal approximation.

It was found that threeS-configurations are more effec-
tive than the original DIA configuration. The best of them
are configurationsS1 and S4, having an efficiency value
1.5 times greater than the one for the original DIA. Both of
them may be recommended for implementation into wind-
wave forecasting practice.

Additionally, sixM-constructions of twoS-configurations
were found to have an efficiency better than the best of the
S-configuration,S4. Four of them,M5, M6, M7, andM8,
may be recommended for implementation.

The better long-term efficiency derived of theS-confi-
gurations andM-constructions was confirmed on the basis
of intercomparison between the relevant integrated parame-
ters of wave spectrum shape, following from the long-term
solutions of Eq. (1). The prospective of seeking an effec-
tive M-construction with three or moreS-configurations was
discussed.
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