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ABSTRACT: For modelling a series of depth profiles covering the relative depth parameter interval 2>kph>0.3, 
evolution of two-dimensional gravity wave spectra is calculated in the frame of three-wave quasi-kinetic 
approximation derived by Zaslavskii and Polnikov (1988). The relative impact of refraction and nonlinearity on a 
change of two-dimensional spectra shape for gravity waves is estimated. It is shown that on the background of 
refraction impact on the spectrum shape, the three-wave nonlinearity results in a remarkable change of angular and 
frequency distribution for a wave energy spectrum. Herewith, in the spectral peak domain the nonlinearity reduces 
the value of the angular narrowness parameter by 20–30%, counteracting the refraction during the wave propagation 
into a shoal zone. In contrast to the high frequency domain of the spectrum, the angular narrowness parameter is 
increased due to the nonlinearity. For this reason, the nonlinearity can result in more than 10% change of wave 
energy in a shallow water zone with respect to the linear wave evolution case. These conclusions were checked by 
using the SWAN model under the same conditions. It was found that the SWAN model describes some of the main 
peculiarities of nonlinear waves in shallow water. Some recommendations were made to elaborate the three-wave 
nonlinear term in the source function of the SWAN model. 

Keywords: shallow water waves, refraction, nonlinearity, three-wave quasi-kinetic approximation, wave 
spectrum, spectrum shape parameters 

1. INTRODUCTION 

There are a lot of papers devoted to the 
investigation of nonlinear wave dynamics in 
shallow water (for references, see earlier papers: 
Freilich, Elgar and Guza, 1990; Beji and Battjes, 
1993; Eldeberky, 1996; Young, Verhagen and 
Khatri, 1996; present state is presented in 
Proceedings of 29th International Conference of 
coastal Engineering, 2004). Interest in this topic is 
stimulated by both the scientific and practical 
aspects of the problem. From a scientific point of 
view, for example, it is very important to find out 
the relative roles of different wave evolution 
mechanisms in water of finite depth. In particular, 
the question of the relative roles of depth 
refraction and nonlinearity is one of the 
interesting points in the description of wave 
propagation to a shallow water zone. Besides, the 
answer to this question is necessary for the 
justification of the kind of numerical model to be 
used in practice (linear or nonlinear). 
The solution of the question posed is difficult for 
the reason that depth refraction is essential only in 
the case of shallow water, when the relative depth 

kph is rather small, i.e. in the case when kph < 1 
(here kp is the spectral peak wave number, and h 
is the local depth). But just in this case, the 
applicability of the standard four-wave 
approximation for the nonlinear wave evolution 
description fails (Zaslavskii, Krasitskii and 
Gavrilin, 1995; Zakharov, 1998). Up to the recent 
years there was no justified approximation for the 
spectral description of the nonlinear wave 
evolution mechanism in the frame of kinetic 
equation in the shallow water case when kph < 1. 
This problem was solved by Zaslavskii and 
Polnikov (1998) and Polnikov (1998) by 
constructing a so-called three-wave quasi-kinetic 
approximation for the description of the nonlinear 
wave spectrum evolution in shallow water. 
Applicability of this approximation to solution of 
practical problems was proved by the comparison 
of certain problem calculations with some 
laboratory experiments (Piscopia et al., 2003). 
Thus, at present the problem posed can be solved. 
In the present paper we consider the simplest 
cases of the two-dimensional wave spectrum 
evolution in the three-wave quasi-kinetic 
approximation for modelling a series of one-
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dimensional depth profiles. The main point of our 
investigations is to estimate the relative roles of 
depth refraction and nonlinearity in the process of 
gravity wave spectrum formation during wave 
propagation into a shallow water zone. To our 
knowledge, this problem is considered in 
scientific literature for the first time. 
This paper is laid out as follows. In Section 2, we 
discuss the pose of the problem and introduce the 
necessary definitions and formulas. Method of 
numerical study is given in Section 3. Section 4 is 
devoted to results and analysis. In Section 5, we 
check features of nonlinear three-wave term of the 
SWAN model in light of the results obtained 
before. Final conclusions are made in Section 6. 

2. THE PROBLEM POSED 

As it is well known, in shallow water the 
evolution of waves is accompanied by the 
following four processes: shoaling, refraction, 
nonlinear interaction among waves, and shallow-
water breaking (hereafter this kind of breaking is 
called “surfing” in accordance with Freilich, Elgar 
and Guza (1990) and Eldeberky (1996)). The 
latter process is modified by the bottom friction, 
but it is not important in the case under 
consideration. All these processes are described in 
a spectral representation by the following model 
(Polnikov and Sychev, 1996): 
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is the two-dimensional spatial wave  
action spectrum  N (k) , represented via the energy  

frequency-angle spectrum S(σ, θ) in the 
frequency-angle space (σ, θ ); g is the gravity 
acceleration, С= σ /k and Cg = k∂σ /k∂k is the 
phase and group velocity of the wave component 
with the frequency σ and wave vector k, related 
by the dispersion relation σ(k). Сθ  is the velocity 
of the wave energy transfer in the angle space 
(refraction) (Polnikov and Sychev, 1996): 
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F(Φ ) is the total source function of the model, 
which, in general, includes both the nonlinear 
evolution mechanism (NL) and the dissipation 
one (BR). Given the qualitative characteristics of 
our investigation, later in this paper we use 
representation of the source function in the form: 

.NLcF NL=  (4) 

Thus, we do not take into account any dissipation 
mechanisms. Expression for the term NL is given 
below. The coefficient cNL takes the value 0 or 1 
depending on the problem posed: linear or 
nonlinear. The shallow water dissipation term 
(“surfing” term) is omitted especially with the 
aim to determine the role of the nonlinear 
mechanism only1. 
To specify the nonlinear term NL we use the 
three-wave quasi-kinetic approximation, a short 
description of which is as follows (Zaslavskii and 
Polnikov, 1998). Under the assumption that 
nonlinear wave-wave processes are realized for a 
certain interaction time, the nonlinear evolution of 
a gravity wave spectrum is governed by the three-
wave quasi-resonant interactions. In this case, 
instead of the single kinetic equation, dynamics of 
the two-dimensional spatial wave action spectrum, 
N (k), is described by the NL function governed 
by a system of two equations as follows. One of 
them is the typical evolution equation: 
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where instead of classical exact delta-function for frequencies, ))()()(( 21 kkk σσσδ ±± , usually used in a 
traditional theory for nonlinear waves, the spread delta function is introduced. It has the form 

                                                           
1 As shown in the special study of Piscopia et al. (2003), the role of the surfing term is very important for a comparison with measurements. But in 

modelling our posed problem, this term is not needed yet. 
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The reason for such replacement is provided by the fact that nonlinear interactions are realised in shallow 
water for a rather short time, and a typical transition to the infinite time of nonlinear interactions is not valid 
in this case (for details, see Zaslavskii and Polnikov, 1988; Piscopia et al, 2003). Note that for β (k) → 0, 
according to Eq. (6), we have the traditional representation of the evolution equation, as far as the spread 
delta-function is going to be the exact one. 
The spread delta-function has a parameter of spreading, β (k), which should be defined self-consistently 
from the dynamic equations. It was proposed in the original paper (Zaslavskii and Polnikov, 1988) that this 
parameter is governed by the separate equation of the form 

∫ ∫= 21 kkk ddπβ 4)(  
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2
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The description of nonlinear evolution mechanism for wave spectrum in the frame of Eqs. (5)–(7) was called 
the quasi-kinetic approximation (Zaslavskii and Polnikov, 1998). 
In Eqs. (5) and (7), functions V1(…) are the standard matrix elements for the three-wave interactions, which 
depend on the local depth h. Their explicit representation is as follows: 
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In the case of finite depth water, the proper 
frequency, σ (k), of the wave with a wave-vector 
k(h) is given by the dispersion relation of the 
form: 

[ ] .)tanh()( 2/1khkgk =σ  (10) 

Integration used in Eqs. (5) and (7) is carried out 
through the whole k-space. 
For the case of unidirectional waves, the quasi-
kinetic approximation was studied in Zaslavskii 
and Polnikov (1998) and Polnikov (1998). 
Peculiarities of two-dimensional energy transfer 
through the wave spectrum were considered in 
Polnikov (2000). But spatial evolution of two-
dimensional wave spectrum was not investigated 
in this approximation yet. 
Thus, the problem is to solve Eq. (1) with the 
source function (4) in the approximations (5)–(7) 
for a series of modelling configurations of the 
depth profile and for several different kinds of the 
initial two-dimensional wave energy spectrum 
shape, S(σ, θ). The relative role of refraction and 
nonlinearity is defined by the analysis of the 
spectral shape parameters change for the linear 
and nonlinear problems posed for Eq. (1). 

In particular, we pose a task to estimate the 
influence of nonlinearity (assuming that kph < 1) 
on the following spectral shape parameters: 

a) the spatial wave energy distribution 

,),,()( θσθσ ddxSxE ∫=  (11) 

b) the frequency width of the spectrum 
,)(/)(/)()( xxSxExB pp σ=  (12) 

c) the angular narrowness of the wave spectrum 
.);(/);,();( xSxSxA p σθσσ =  (13) 

Here σp , θp  and Sp= S(σp) are the frequency-
angular coordinates of the spectral peak and the 
value of the latter, respectively. Sometimes we 
consider dependence of angular narrowness 
parameter at peak frequency σp  on the space: 

.( p )( = ), xAxA pσ  (14) 

The choice of the wave energy spectrum S(σ, θ) 
for analysis, instead of the wave action spectrum 
N(k) is due to the fact that the energy spectrum is 
the most widely measured in situ, and the values 
of the shape parameters for this spectrum are well 
known. 
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3. METHOD OF INVESTIGATION 

For a study of refraction effects on frequency-
angular spectrum it needs to find a solution of 
Eq.  (1) in two-dimensional space (x , y). A 
peculiarity of the quasi-kinetic approximation 
consists in a necessity to solve Eq. (7) with 
respect to β (k) at each time step for each point of 
the spatial grid. Then, a value of the term NL is 
defined from Eq. (5), and Eq. (1) can be solved. 
As the matrix elements, V1(…), depend on the 
local depth h(x , y), the problem posed becomes 
rather complicated from a numerical point of 
view. But for simplified depth profiles h(x , y), 
and with a proper choice for the frequency set 
{σk} (1 ≤ k ≤ K ), angle set {θm} (1 ≤ m ≤ M ), and 
the spatial grid {xi , yj} (1 ≤ i ≤ I , 1 ≤ j ≤ J ), the 
problem posed is executable by means of modern 
PC of moderate power. 
It should be mentioned that the quasi-kinetic 
approximation has a certain theoretical restriction 
of applicability with respect to the time scale: a 
value of the spreading parameter β (k) has to be 
smaller than the typical frequency σ (k , h) of the 
waves under consideration (Zaslavskii and 
Polnikov, 1998). But in real calculations, 
applicability of the theory is tested by verification 
of the model as a whole for a certain geometry of 
a system under consideration. Proper estimations 
of applicability of the approximation were made 
in Piscopia et al. (2003) for a series of tank 
experiment data. On this basis, a choice of spatial 
scales of the basin under investigation was taken 
in accordance with experimental situations 
described in Beji and Battjes (1993) and Piscopia 
et al. (2003). 

3.1 Depth profiles and boundary conditions 

First of all, let us specify the depth profiles. To 
serve our aims, the case of isobaths parallel to the 
strait shoreline are quite acceptable. For the case 
of the x-axis directed normal to the shoreline, 

wave field parameter distributions can be 
described by one-dimensional arrays of the kind 
Р{xi} (1 ≤ i ≤ I ) with the minimal value of  
y-points (J = 3) which are needed to secure the so-
called “fluid” lateral boundary conditions. For 
such boundary conditions, at each time step, wave 
spectrum values at the lateral boundaries, j = 1 
and j = 3, are equal to the ones calculated for the 
spectrum at the internal grid line, j = 2. Such an 
approach for the boundary conditions permits to 
minimize the number of pre-calculated matrix 
elements in Eq. (8) and the time of calculations. 
In the case of constant depth slope, the depth 
profile can be given by the formula, which in a 
discrete representation has the form: 

.0i ixsh)h(x ⋅Δ−=  (15) 

Here h0 is the depth at the outer boundary (far 
from the shore), s is the value of slope, Δx is the 
spatial step normal to the shore, and i is the 
current number of the spatial point. In this case, 
the main calculations were executed under the 
following conditions: h0 = 5 m, s = 0.025, 
Δx = 20 m, I = 10 (i.e. 5 m ≥ h ( x ) ≥ 0.5 m, see 
Fig. 1a). The value of Δу is not important, in the 
case of fluid boundaries (for certainty, we use 
Δу= Δх). 
Together with the profile mentioned, it is 
interesting to consider the depth profile with a 
shallow water bar (Fig. 1b). Our experience 
(Piscopia et al., 2003) shows that a depth profile 
with a bar is rather informative, from the physical 
point of view. In our case of a shallow water bar, 
the depth profile is given by the following ratios 
(in meters): 

h(1) = h(2) = h(3) = 2; 
h(4) = 1.5; 
h(5) = h(6) =1; h(7) = 1; 
h(8) = 1.5; 
h(9) = h(10) = 2. (16) 

The step of the spatial grid is the same: Δx = 20 m. 
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Fig. 1 A typical scheme of bottom profiles under consideration: a) with a constant slope, b) with a bar. 
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3.2 Frequency-angle set 

Taking into account the depth profile features, the 
peak frequency, σp , and the frequency set, {σk}, 
are chosen to secure the following relative depth 
interval, 2 > kph > 0.3. Herewith, the upper 
frequency value of the set {σk} is to be more than 
2.5 σp . The latter requirement is due to the fact 
that the three-wave interactions do form a local 
spectral maximum near the doubled peak 
frequency (Polnikov, 1998 & 2000). This process 
should be correctly described in numerical 
simulations. As a result, the set of cyclic 
frequencies (Hz) was given by the ratio: 

20) , 2, 1,  (,)1(03.003.0 …=−+= kkf k  (17) 

with the choice f p = 0.24 Hz. (The angular 
frequencies, σ k , are calculated by the ratio 
σ k = 2π f k ). 
The angle set was given by the ratio: 

( ) 19,...,2,1,1812 =−+−= mπmπθm  (18) 

with the choice of general direction θ = 0 
corresponding to the normal of the shore. 

3.3 Initial spectrum 

The shape of initial energy spectrum is given in 
the JONSWAP form. Herewith, one should keep 
in mind that just the frequency σ k is a constant 
parameter of the wave component propagating 
into shallow zone, whilst the wave number k is 
defined by the dispersion relation (10). As it was 
shown in Kitaigorodskii, Krasitskii, and 
Zaslavskii (1975), the spatial spectrum shape S(k) 
does not depend upon the depth. Thus, for the 
correctness of calculations, the initial spectrum 
should be prescribed in the universal spatial 
representation S(k) rather than in the frequency-
angular one, i.e. S(σ, θ). So, for the initial 
spectrum in the JONSWAP one should use 
representation of the form: 

/)()()( kθkSS Ψ=k  
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Here  α  is  the   Phillips’  constant  (in  our   case  

α = 0.01), J(…) is the non-dimensional peak 
enhancing function of the JONSWAP-type, 
introduced in Hasselmann et al. (1976) for more 
generality of the spectral shapes under 
consideration, and Ψ (θ ) is the angular spreading 
function. 
In this representation J(…) has the form: 
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where the following values are used for the shape 
parameters: γ = 1 , 3 and Δ = 0.1. The angular 
spreading function is given by the formula: 

θθ nnQ cos)()( =Ψ  (21) 

where ∫= θθ dncos/1  Q(n)  is the normalizing 

coefficient. The typical set of the cosine power 
values is n = 2, 12. Transition from S(k) to S(σ, θ) 
is governed by the formula: 
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Thus, from the very beginning, the frequency-
angular set, {σ k , θ m}, is given. Further it is 
recalculated into the set {k k , θ m} for the fixed 
local depth at each spatial grid point to define the 
initial spectrum given by Eq. (19). After 
executing the wave evolution calculation, analysis 
of the output spectral shape is done for the 
traditional representation of the spectrum, i.e. for 
S(σ, θ). 

3.4 Numerical scheme for solution of Eq. (1) 

Rather effective numerical scheme for solution of 
Eq. (1) was proposed earlier in Polnikov and 
Sychev (1996). The distinctive feature of this 
choice consists in the use of the upward implicit 
scheme of the first order for the advective terms 
of the model only, whereas for the refractive term 
the explicit scheme is used for numerical 
simplicity. As a result, to calculate the spectral 
component ),,,,( nmkji tyx θσΦ  at the (n + 1)-th 
time step, for each frequency σ k we have the 
following ratio: 
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Here n, i, j, m are the indexes for the variables t, x, y, θ, respectively, with the proper steps, Δ t, Δx, Δу and 
Δθ ; )( n

ijm
n

ijm FF Φ≡  is the source function value at the proper point of calculations, and Δ t ′=1/Δ t, 

Δx ′=Cg x /Δx , Δy ′=Cg y /Δy , Δθ ′=Cθ /Δθ . The experience of using scheme (23) has shown that it may be
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applicable for both stationary and non-stationary 
descriptions of the wave field, with a rather quick 
convergence of the solution (Polnikov and 
Sychev,1996). Herewith, for the linear case, the 
stationary case is realized simply by putting 
Δ t→∞ (or Δ t ′→0). But for the nonlinear case, 
one should use a non-stationary scheme with a 
suitably small value of Δ t. 
Note that in the considered case of parallel 
isobaths, for the y-coordinate directed along the 
shoreline, it is sufficient to take J = 3, owing to 
the use of the “fluid” boundary conditions at the 
lines with j = 1 and j = 3 (see subsection 3.1 
above for clarification). Such an approach is 
evidently equivalent to the case of the infinitely 
long shoreline, and evolution of the wave 
spectrum is one-dimensional. Herewith, this 

approach permits the solution of the problem with 
a minimum of PC resource. 

4. RESULTS OF CALCULATIONS AND 
ANALYSIS 

A representative set of model runs is presented in 
Table 1. The choice of runs is provided by the 
items of tasks named at the end of Section 2. 
Calculation results for the integral features of 
wave spectra in the most general form are 
presented in Table 2. Whilst the results are 
analysed, attention is paid to the frequency 
interval σ ≥ σ p , for which the applicability of the 
theoretical approach is accepted as proved, in 
accordance with verification of the model in 
Piscopia et al. (2003). 

 
Table 1 Representative set of model runs. 

Number of 
run 

Parameters h0 , s and 
interval of k p h  

Angular 
parameter n 

Shape 
parameter γ 

Initial value 
A p 

Initial value  
B 

Initial value  
θ p , degrees 

CONSTANT DEPTH SLOPE 

1 h0 =10m s=0.05; 
2.36 > k p h > 0.5 2 1 0.64 0.68 0 

2 h0 =5m s=0.025; 
1.33 > k p h > 0.35 2 1 0.64 0.68 0 

3 -“- 2 3 0.64 0.33 0 
4 -“- 12 1 1.41 0.68 0 
5 -“- 12 1 1.41 0.68 40 

DEPTH PROFILE WITH A BAR 

6 Bar of form (16) 
0.74 > k p h > 0.5 2 1 0.64 0.68 0 

7 -“- 12 1 1.41 0.68 0 
8 -“- 12 1 1.41 0.68 40 

 
Table 2 Integral characteristics of calculated stationary two-dimensional spectra. 

 

* Numbers in brackets denote the grid point indices along axes ОХ. 

No. of 
run E(1) / E(10)* A(σp) | i=10 B(10) * θp(10) [grad] | σp(10) [Hz]*

 cNL=0 cNL=1 cNL=0 cNL=1 cNL=0 cNL=1 cNL=0 cNL=1 
CONSTANT DEPTH SLOPE 

1 0.99 0.91 1.62 1.54 0.61 0.84 0 | 0.21 0 | 0.21 
2 0.67 0.65 1.74 1.33 0.57 1.77 0 | 0.24 0 | 0.21 
3 0.63 0.61 1.74 1.22 0.29 1.2 0 | 0.24 0 | 0.21 
4 0.51 0.53 2.88 1.93 0.56 1.86 0 | 0.24 0 | 0.21 
5 0.89 0.86 2.0 1.83 0.58 1.65  15 | 0.24  20 | 0.21 

DEPTH PROFILE WITH A BAR 

 E(1)/E(7) | E(10)/E(7)* A(σp) | i =7 | A(σp) | i =10 
[A(σp(7)) | i =10]

* B(7) | B(10)* σp(7) [Hz] | σp(10) [ Hz]* 

 cNL=0 cNL=1 cNL=0 cNL=1 cNL=0 cNL=1 cNL=0 cNL=1 
6 0.91 | 0.87 0.79 | 0.93 0.92 | 0.65 0.85 | 0.63 0.63 | 0.67 0.97 | 1.12 0.24 | 0.24 0.21 | 0.21
7 0.81 | 0.90 0.68 | 0.97 1.83 | 1.24 1.80 | 2.28 [1.21] 0.63 | 0.66 1.24 | 1.45 0.24 | 0.24 0.18 | 0.57
8 1.02 | 0.86 0.85 | 0.93 1.58 | 1.00 1.60 | 1.85 [1.00] 0.64 | 0.68 1.18 | 1.46 0.24 | 0.24 0.21 | 0.57
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4.1 Constant slope case 

4.1.1 Wave energy spatial distribution 

For the visible estimation of the effect, the wave 
energy spatial distribution, Е(х), for linear and 
nonlinear cases is shown in Fig. 2. But the 
following qualitative discussion is based on the 
results presented in Table 2. In Table 2 the main 
energy distribution information is represented by 
the ratio of its initial value (i.e. energy at the point 
i = 1) to energy at the point nearest to the shore 
(i.e. the point with number i = 10). 
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Fig. 2 Spatial distribution of wave energy E(x) 

(run 2). 1 – linear case; 2 – nonlinear case 
(conventional units, in percentage of E (10) 
for linear task). 

From Table 2 it is seen that for run 1, when the 
minimal relative depth is kph=0.5, the difference 
of energy for the linear and nonlinear cases is of 
the order of 10%. In other runs this difference is 
smaller (due to strong shoaling), but in the 
nonlinear case (сNL = 1), the wave energy level 
near the shore is always higher. 
In fact, diminishing kph  to the value 0.35  
(runs 2–5) leads to equalling of all values Е(10) 

due to shoaling effect. This result testifies a 
smaller rate of the energy increase due to the 
nonlinearity with respect to one due to the 
shoaling, for the considered depth profile case. 
But there is a tendency in wave energy increase in 
the nonlinear case. 
The following explains the effect of additional 
growth of wave energy in the nonlinear case, 
when wave propagation into the shallow water 
zone takes place. According to wave evolution 
Eq. (1) and ratio (2), the density of energy flux 
should be constant along the way. For this reason, 
as it is well known for the case сNL = 0 (Polnikov 
and Sychev, 1996; Krasitskii, 1974), whilst 
diminishing values of kph , the wave energy 
begins to decrease due to a refractive narrowing 
of the angular spreading function of the wave 
spectrum, which leads to increasing mean wave 
speed. But further diminishing the depth (when 
kph < 1) leads to a wave energy growth, as the 
main part of the wave components is retarding 
(for details, see Krasitskii (1974)) 2. 
For the nonlinear waves, the mean energy 
transport speed is diminishing additionally for the 
reason of increasing high-frequency (low speed) 
wave components portion in the wave spectrum, 
which is the main feature of the three-wave 
processes (see Fig. 3, and text in Polnikov, 2000). 
The one-dimensional spectra in both cases are 
shown in Fig. 4. 
In accordance with these features of the non-
linear process, the above gives the needed 
explanation of the additional energy growth due 
to nonlinearity. But for very small depths 
(kph ≤ 0.5), this additional effect is relatively 
small with respect to that of the shoaling, as it is 
seen from the presentation in Table 2. 

 

 

Fig. 3 Two-dimensional nonlinear 
transfer in the quasi-kinetic 
approximation (for the initial 
condition of run 3).  
Values of the transfer are given 
in conventional units as in 
Polnikov (2000). Negative 
values of the transfer are marked 
by hatches directed inside.2 

                                                           
2 This is the essence of the shoaling effect explanation. 
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Fig. 4 One-dimensional spectrum shape at the 7th 

point near the shore (run 2): 1 – linear case, 
2 – nonlinear case (conventional units). 

4.1.2 Integral angular parameters distribution 

Let us consider now a changeability of integral 
angular and frequency parameters of the two-
dimensional spectrum, taking into analysis values 
of the angular narrowness at the peak frequency, 
Ap = A(σp), and the frequency width, В, given by 
Eqs. (12)–(13). Numerical results for space 
distribution of )(xAp  and )(xB  are given in Fig. 5. 
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Fig. 5 Spatial distribution of integral parameters 
(run 2): a) А p(x ) ,  b) B(x): 1 – linear case,  
2 – nonlinear case. 

As to the angular narrowness, the following is 
observed. Firstly, the angular narrowness value Ap 
is always significantly increasing, as it may be 

expected according to the refraction theory. Thus, 
the refractive effect of narrowing two-
dimensional spectrum does always take place (see 
Table 2). 
Secondly, in the nonlinear case, the narrowing 
effect is reasonably weaker: a relative weakening 
may reach 30% of the value of Ap found for the 
linear case (run 4). In other words, the 
nonlinearity counteracts the refractive narrowing 
of the wave spectrum. The extent of weakening of 
the refractive narrowing does increase with the 
relative depth and decrease (compare runs 1 and 2) 
with increasing wave slope (runs 2 and 3), and 
increasing initial narrowness of the spectrum 
(runs 2 and 4). The latter feature is due to the 
increasing intensity of the omni directed wave 
components, which leads to an increase in the 
intensity of nonlinear interactions among waves. 
This effect is more evidently seen from the 
distribution of )(σA  at the final point (Fig. 6). 
An explanation of the weakening effect on the 
spectrum narrowing due to refraction is related to 
the structure of the nonlinear energy transfer in 
the three-wave approximation (Fig. 3). According 
to Polnikov (2000), the energy is transferred from 
the spectral peak domain (near the frequency σp) 
to the higher frequency domain where σ ≥ 2σp. 
Thus, all the mentioned features of the weakening 
of the spectrum angular narrowing are wholly 
explained by the strengthening of the nonlinear 
interactions. 
Thirdly, for waves with general direction θp to the 
normal of the shore, the spectral narrowing effect 
and effect of its weakening are reasonably less 
expressed (compare runs 4 and 5 in Table 2). The 
strength of such an effect evidently depends on 
the initial value of θp . 
An explanation of the latter effect (taking place 
both in linear and nonlinear cases) consists in the 
following feature of refraction. In the case when 
θp is not normal to the shore, some wave 
components (which are closer to the normal) 
deviate stronger from the initial direction than θp 
does, but other components (which are farther 
from the normal than θp )  cannot follow the 
change of the value of θp(x). As a result, the pure 
refractive narrowing of the spectrum becomes 
weaker. Eventually, this effect leads to а 
weakening of the nonlinear transfer intensity, as it 
was explained above when the features of 
nonlinear processes are discussed. 
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Fig. 6 Dependence of the angular narrowness on 

frequency, А ( f ) , at the point i=10: 
1 – initial angular narrowness function for 

runs 2 and 3 
2 – angular narrowness function for a 

stationary solution of linear case for runs 
2 and 3 

3 – angular narrowness function for a 
stationary solution of nonlinear case for 
run 2 

4 – angular narrowness function for a 
stationary solution of nonlinear case for 
run 3 

Initial peak frequency f p=0.24 Hz. 

It is worth mentioning especially the effect of 
increase in the spectrum narrowness with the 
increase in frequency, which is due to the 
peculiarity of the three-wave interactions as well 
(Fig. 6). From this figure it is seen that for the 
nonlinear waves, in contrast to the case when 
сNL = 0, the value of A(σ) at frequencies σ  ≥ 2σp 
may reach magnitudes in 1, 2 times greater than 
A(σp). This effect was not mentioned in the 
literature before. Its main feature is a substantial 
difference of high-frequency narrowness of wave 
spectrum in linear and nonlinear cases. One 
should expect that wave breaking will not 
reasonably change the strength of the effect 
discussed, as far as all known formulations of the 
term BR for shallow water are linear in the 
spectrum (Battjes and Janssen, 1978; Piscopia  
et al., 2003). The latter means that the term BR 
influences weakly on the angular spreading. 
Maybe just for this reason, the turning of waves is 
well seen visually near the shore despite the 
nonlinear weakening of the spectrum turning in 
the peak frequency domain (run 5). 

4.1.3 Integral frequency parameters 
distribution 

About the spatial distribution of the frequency 
width of the spectrum, B(x), one may draw the 
following conclusions. 
Firstly, in the linear case, the shoaling effect leads 
to small, though remarkable (of the order of 10%), 
decrease of the magnitude В. In the nonlinear case, 
on the contrary, a substantial increase (3–4 times) 
in the spectral frequency width is noted. On the 
other hand, a strong counteraction of the 
nonlinearity to the shoaling takes place. This 
effect was also revealed earlier in Polnikov (1998) 
and Piscopia et al. (2003). But here we have 
found additionally that the nonlinearity impact on 
the spectral shape formation is enhancing whilst 
the narrowness of initial angular function of the 
spectrum increases (compare runs 2 and 4 in 
Table 2). Evidently, this effect is due to the 
intensification of the nonlinearity itself. 
Secondly, the mentioned effect of the frequency 
spectrum widening is enhancing with the depth 
decreasing and wave slope increasing (due to the 
increases in nonlinearity, in this case, evidenced 
from formulas (5) and (9)). But the effect 
becomes weaker whilst the initial general 
direction of waves deviates form the normal to the 
shore (Table 2). 
The nature of these features of spectrum widening 
is the same as the one mentioned when the 
angular effects are explained above. In all cases 
mentioned, just the angular distribution of wave 
energy in the spectrum governs the intensity of 
nonlinear interactions and results in the effects 
discussed. 

4.1.4 Spatial distribution of θp and σ p 

A character of the spatial distribution of the 
general wave direction, θp , and the spectral peak 
frequency σp  may be analyzed by their limiting 
values at the grid point nearest to the shore. 
Without details, here we should note the 
following. 
Taking into account the results for run 5, it is seen 
that the nonlinearity makes weaker the rate of 
variation of θp(x) due to refraction. This effect is 
explained by the fact of energy transfer from the 
spectral peak domain to higher frequencies, 
changing the frequency-angular structure of the 
spectrum in whole (Fig. 3). As seen, this process 
has an influence on the distribution of θp(x). 
In the case of rather strong nonlinearity (all runs 
except the first one), a decrease of the spectral 
peak frequency value σp(10) when сNL = 0 is 
observed. This effect, evidently, is due to the fact 
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of nonlinear energy transfer from the spectral 
peak domain to higher frequencies, resulting in a 
shift of the main peak to the lower frequencies 
(see also Piscopia et al., 2003). 

4.2 The depth profile with a bar 

Consider now calculation results for the case of 
depth profile with a submerged bar described by 
Eq. (16), comparing them to results for the 
constant slope depth. Herewith, the point with 
index i = 7 should be taken as the additional 
control as the depth at this point starts to grow. 
For this reason, the relative values of the wave 
spectrum parameters are of interest at the initial, 
intermediate (i = 7), and final grid points. Some 

results are plotted in Fig. 7. Generalized 
presentation is given in Table 2. 
 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10

1

2E(x)

X, i

 
(a)

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

1

2Ap7(x)

X, i

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

1

2
B(x)

X, i

 (b)  (c) 
Fig. 7 Spatial distribution of integral parameters in the case of bar profile: a) E(x), b) Аp (x), c) B(x): 1 – linear case, 

2 – nonlinear case. 

 
4.2.1 Wave energy distribution 

Firstly, as seen in the second part of Table 2, in 
the nonlinear case, a high energy level is 
maintained with respect to the linear case, in 
addition to the above mentioned effect of energy 
enhancing at the point of maximal refraction 
(i = 7). Note that in the linear case, the wave 
energy is damped due to an “inverse shoaling” 
effect whilst the depth becomes greater. The 
difference between energy levels, in these two 
cases, is not too great, but it may reach up to  
10–20% (run 7). 
As explained in subsection 4.1.2, it is clear that 
the effect described is more remarkable for a 
narrower angular distribution of the initial 
spectrum (compare runs 6 and 7), as the nonlinear 
interaction intensity is greater in such a case. 
Secondly, for the initial general direction θp from 
the normal to the shore, the effect is weaker. 

Explanation of this effect is the same as in 
subsection 4.1.2. 
In the nonlinear case, a reason for a high wave 
energy level maintained after transition through a 
submerged bar domain is that the nonlinear 
interactions are continuing to act intensively 
because water is still shallow, and a reasonable 
part of the energy is located at high frequencies. 
Therefore, an intensive transfer of energy 
continues into the high frequency domain where 
the “inverse shoaling” does not work. 

4.2.2 Integral frequency and angular 
parameters distribution 

In the bar case, it is interesting to note the process 
describing a return of the angular narrowness 
value Ap to its initial one. It is seen in Table 2 that 
if a jump of peak frequency to the upper limit of 
the frequency interval is not realized (this effect is 
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discussed below) in the nonlinear case, the said 
return takes place with a surplus (i.e. Ap(10) is 
even lower that Ap(1)). The reason for the effect 
is the same: an intensive transfer of energy from 
the peak frequency domain to the upper 
frequencies along the whole wave trajectory, both 
before and after the bar. 
In addition, it is important to note that in the case 
of a peak frequency jump to the upper frequencies, 
a sharp increase in the angular narrowness Ap(10) 
is observed at the new peak frequency (runs 7 and 
8). This specific effect of the angular narrowing at 
high frequencies due to the nonlinearity was 
already discussed above. But in this case, it is 
manifested much stronger. 
Regarding the spectrum frequency width one can 
note that in the linear case, the final value, В(10), 
equals to the initial one, В(1) (Fig. 7c). But in the 
nonlinear case, remarkable frequency widening is 
observed at the point i = 7, followed by a 
subsequent growth of B after passing the bar. It is 
interesting that for the depth profile with a bar, a 
change of initial general direction θp does not 
influence the values of B at the control points 
after passing the bar. Apparently it is explained 
by an accidental combination of depths and 
distances in the profile chosen. In principle, a 
nonlinear influence must be weaker with an 
increase in initial deviation of θp from the normal 
to the shore (or to the bar) for the reason 
mentioned in subsection 4.1.2. 

4.2.3 Distribution of θp and σp 

As regards the general wave direction distribution, 
θp(х), no peculiarities were revealed in all runs. 
For instance, in run 8, the distribution θp(х) is the 
same for both linear and nonlinear cases and 
similar to the case of constant depth slope. For 
this reason it is not presented in Table 2. 
The spectrum peak frequency distribution, σp(х), 
has peculiarities depending on the spectrum shape 
and value of the nonlinearity parameter, сNL . As 
seen from Table 2, in the linear case, the value 
σp(х) does not vary. In the nonlinear case, both a 
decrease of σp (runs 6 to 8, point i = 7) and a jump 
of σp to the upper limit of the frequency interval 
used for calculations (runs 7 and 8, point i = 10) 
are observed. 
Firstly, note that the difference between the runs 
is due to a different extent of the nonlinear 
interaction intensity, which in turn is due to the 

difference of the initial spectrum shapes. It is 
clear that the nonlinear interactions become 
stronger with an increase in the angular 
narrowness (whilst other spectrum parameters are 
the same) due to a greater density of the wave 
energy in the (σ , θ )-space. Remember that 
analogous effect also takes place in the constant 
depth slope case. 
Secondly, a strengthening of nonlinearity results 
in a quicker transfer of energy to higher 
frequencies, which provides a jump of the 
spectrum peak to the upper limit of the frequency 
interval. This effect, as mentioned in Polnikov 
(1998) and numerically proved in Piscopia et al. 
(2003), is not realized in practice for the reason of 
intensive wave breaking at high frequencies. But, 
here, the local secondary peaks of the spectrum at 
frequencies multiple of σp remain (see figures in 
Piscopia et al., 2003). Due to this circumstance 
we put especially in Table 2 (in square brackets) 
the angular narrowness parameter at the real peak 
frequency, σp(7). 
The one-dimensional and two-dimensional 
spectrum shapes are given in referenced papers 
and are not repeated here. 

5. TESTING SWAN MODEL 

All previous features of nonlinearity in shallow 
water are rather important from a physical point 
of view. Thus they should all be reproduced in 
any sophisticated practical model. One of such 
model is the SWAN one, which is widely used in 
practical calculations. Thus, it is worthwhile to 
check the properties of the SWAN nonlinear term 
with respect to the results obtained before. But in 
this checking one should switch off any 
dissipation terms making it similar to our test 
senarios. Test results are presented in Figs. 8, 9 
and 10. All features of numerics can be found in 
the SWAN User Manual (2004). 
It needs to mention that here we show only a part 
of the numerical results obtained with SWAN, 
related just to the non-stationary mode as results 
for the stationary mode are less treatable and will 
be discussed in a separate paper in future. 
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Fig. 8 Spatial distribution of integral parameters in the SWAN model for constant slope case: a) HS(x), b) 
DSPR(x): 1 – linear case, 2 – nonlinear case. 
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Fig. 9 Spatial distribution of integral parameters in the SWAN model for bar case: a) HS(x), b) DSPR(x): 1 – linear 
case, 2 – nonlinear case. 
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Fig. 10 Dependence of the angular narrowness on 

frequency, А( f ), in the SWAN model at the 
point i=10 (run 2). 1 – initial value; 2 – linear 
case; 3 – nonlinear case. 

From Figs. 8 and 9 one can see very similar 
behaviour of integral characteristics (significant 
wave height, HS(x), and angular dispersion, 
DSPR(x)3) as functions of space in both cases of 
depth profile. The only remarkable difference is 
seen for energy distribution at the initial points. 
We consider this as the property of the numerical 
scheme used in SWAN. But, in principle, energy 
enhancement at the final point and after bar 
crossing is conserved by the SWAN model in 
accordance with the exact numerical solutions 
obtained above. 
But from Figs. 8 and 9 the counteraction of 
nonlinearity to refraction is not evidently seen. To 
this aim, we plot additionally Fig. 10 as we did 
for Fig. 6 for frequency distribution of angular 
narrowness function at the final point i = 10 for 
                                                           
3 For definition, see SWAN User Manual (2004). 
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run 2. Fig. 10 demonstrates very similar 
behaviour of Ap ( f ) for the nonlinear case, that is, 
we can evidently see the work of nonlinearity 
against refraction. In the SWAN model 
nonlinearity makes refraction narrowing weaker 
at lower frequencies, and at higher frequencies it 
makes narrowing stronger, in full accordance with 
the exact theoretical results shown before. Thus, 
we may state that the SWAN model reveals 
principally the main properties of the exact 
nonlinear model in the frame of three-wave quasi-
kinetic theory. 
Of course, the extent of representation of features 
on nonlinearity in the SWAN model is not 
absolute. In this study we did not vary some 
options in SWAN nonlinear parameterization 
codes to reach better results. In any case, this aim 
could be reached by making a proper correction 
of the parameterization of the three-wave 
nonlinear term used in SWAN. Mainly it related to 
the intensity coefficient of the parameterization in 
Eldeberky and Battjes (1996). But this is a task 
for detailed investigations in future. 

6. CONCLUSIONS 

On the basis of the results obtained we can draw 
the following conclusions. 

1. The relative roles of the depth refraction and 
three-wave nonlinearity are fairly different for 
different spectrum characteristics. The depth 
refraction and three-wave nonlinearity are 
equally substantial in their influence on the 
variation of the angular features of two-
dimensional spectra. At the same time, the 
frequency shape of the two-dimensional 
spectrum is almost completely controlled by 
the nonlinear processes. 

2. The nonlinearity counteracts the refractive 
change of the angular features of the wave 
spectrum. At the peak frequency the 
nonlinearity diminishes the angular 
narrowness parameter by 10–30%, but at the 
higher frequencies, in contrast, it increases the 
latter by 2–3 times. 

3. It is numerically established that the refraction 
process leads to an additional increase in 
nonlinearity intensity. This effect is due to the 
dependence of nonlinear interactions intensity 
on the extent of angular spreading of wave  

energy, i.e. on the angular narrowness of 
spectrum.4 

As a whole, one may conclude that the shallow 
water refraction and the nonlinearity are equally 
important for calculations of wave characteristics 
in shallow water. Accounting for the nonlinearity 
is very important in describing shape changes in 
both one-dimensional and two-dimensional 
spectra. But the refraction is naturally accounted 
for in the latter case only. Here, accounting for the 
refraction permits simultaneously more accurate 
estimation of the nonlinearity impact on evolution 
of two-dimensional spectrum shape. 
At present, the SWAN model demonstrates the 
main properties of the nonlinearity revealed from 
the exact three-wave quasi-kinetic theory. Thus, 
one may expect that the SWAN software gives 
reasonable results of numerical calculations of 
nonlinear waves. But we should mention that in 
the nonlinear case one should use the non-
stationary mode of the model. 
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