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Abstract

This paper aims at validating the three-wave quasi-kinetic approximation for the spectral
evolution of weakly nonlinear gravity waves in shallow water. The problem is investigated
using a one-dimensional numerical wave propagation model, formulated in the spectral rep-
resentation. This model includes both a nonlinear triad interactions term and a wave breaking
dissipation term. Some numerical tests were carried out in order to show the importance of
using the triad nonlinear term in wave propagation spectral models, particularly to describe
both behavior of the spectral integral parameters and of the spectral shape evolution in shallow
water depth. Furthermore; a comparison against different set of experimental observations was
carried out. Comparing the numerical results with the experimental observations made it poss-
ible to show the modeling efficiency of the three-wave quasi-kinetic approximation.
 2002 Published by Elsevier Science Ltd.
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1. Introduction

Numerical modeling of wind waves evolution in coastal zone is important for
many practical aims. Furthermore, being related to a correct description of nonlinear
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wave interactions during the propagation into shallow water, makes this problem
interesting from a scientific point of view.

The nonlinear four-wave interactions play a very important role in gravity wave
spectrum evolution (Hasselmann, 1962; Hasselmann et al., 1976; Young and Van
Vladder, 1993). Nevertheless, the limit of validity of the four-wave interactions
mechanism was not clear until Zaslavskii et al. (1995) investigated on it both analyti-
cally and numerically.

As known, the kinetic equation derivation is based on the assumption that in deep
water the non-resonant three-wave interactions do not directly contribute to the
energy transfer. The contribution of triad interactions can be therefore rearranged in
the derivation of the four-wave kinetic equation by considering slow time scale for
quadratic terms in the dynamic equations (Zakharov, 1974; Crawford et al., 1980).
This assumption is valid for small values of nonlinearity parameter in deep water
(i.e. � � kpa�1, where kp is the spectral peak wave number and a is the mean
wave amplitude).

Zaslavskii et al. (1995) showed that the non-resonant three-wave interactions have
an increasing role as the local depth decreases. Furthermore, these authors found
that the technique generally used to derive the four-wave kinetic equation does not
apply to small values of the relative depth parameter (i.e. kph � 1, where h is the
local depth). The ordinary four-wave kinetic equation is therefore valid in rather
deep water only (kph � 1).

This result was confirmed later by Zakharov (1998) on the basis of different theor-
etical considerations. Calculating the wave–wave interaction time in shallow water
(kph � 1) and comparing it to the mean wave period, this author found an inconsist-
ency of the time scale method used in the theoretical derivation of the kinetic equ-
ation, i.e. the hypothesis of slow time scale for the wave–wave interactions is viol-
ated. Thus, the theoretical problem is to find a more correct representation of the
nonlinear mechanism responsible for the wave spectrum evolution in shallow water.

Many attempts have been made to give a proper description of the nonlinear evol-
ution mechanism in shallow water using the three-wave interactions. Worthy of note
are the pioneer papers of Phillips (1960) and Peregrine (1967), and the more sophisti-
cated approaches of Freilich and Guza (1984); Elgar and Guza (1986); Resio (1988);
Madsen and Sørensen (1992, 1993); Abreu et al. (1992); Holthuijensen et al. (1993);
Nwogu (1994); Eldeberky and Battjes (1996); Beji and Nadaoka (1997, 1999) and
many others. All these approaches give acceptable results. Particularly interesting
are those obtained by Eldeberky and Battjes (1996) and Beji and Nadaoka (1999).
These authors found good agreement between their numerical simulations and
measurements reported by Beji and Battjes (1993). Nevertheless, these last models
are not directly spectral models.

A complete spectral representation for the triad-interactions description was firstly
derived by Zaslavskii and Polnikov (1998) and then tested by Polnikov (1998), using
the concept of finite interaction time. The specific feature of this approach is the
appearance of two equations instead of the single traditional kinetic equation. For
this reason, the derived theory was named ‘ three-wave quasi-kinetic approximation’
for the wave spectrum evolution in shallow water.
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As is known, the main theoretical problem is to overcome the difficulty with the
non-resonant interactions description. Actually, any three gravity waves cannot meet
joint resonant conditions of the kind:

k1 � k2 � k3, (1)

s(k1) � s(k2) � s(k3), (2)

where ki is the wave number vector of one interacting wave and σ(ki) is the wave
angular frequency (hereinafter indicated as frequency for simplicity). The wave num-
ber k � |k| is related to frequency by the dispersion relation, which in absence of
current fields has the following expression

s2(k) � gk tanh(kh), (3)

where g is the gravity acceleration. In shallow water, when the value of the relative
depth parameter is small (kh � 1), s(k) can be approximated as follows:

s(k) � (gk)1/2k[1�(kh)2 /6]. (4)

In this case, when condition (1) is met, the mismatch in the frequency resonance
condition (2) becomes rather small, and the quasi-resonant approximation can there-
fore be introduced. Section 2 provides a short introduction to the theory, whereas
the details can be found in Zaslavskii and Polnikov (1998) and in the bibliography
referenced therein.

The main aim of the present paper is the numerical validation of the three-wave
quasi-kinetic approximation. The equations of the theory have therefore been intro-
duced into a one-dimensional wave propagation spectral model which is also able
to reproduce the effect of wave energy dissipation due to breaking. The set-up
numerical model is described in section 3 and the method of investigation is outlined
in section 4. Two numerical tests were carried out in order to show the importance
of using the three-wave nonlinear term in wave propagation spectral models, parti-
cularly to describe both behavior of the integral parameters and the wave spectrum
evolution in shallow water depth. Testing results are described and analyzed in sec-
tion 5. Validation of the numerical results with two different set of experimental
observations (Beji and Battjes, 1993; Arcilla et al., 1994) is described and analyzed
in section 6. In section 7 the conclusions are drawn.

Finally, the obtained results show clearly that the triad nonlinear interactions are
responsible for the wave energy transfer from the fundamental harmonic to the super-
harmonics. In terms of spectral-integral characteristics, the nonlinearity is responsible
for a significant decrease in the mean wave period Tm. Herewith, this decrease is
generally not accompanied by a significant change in the root mean square wave
height. But, when breaking occurs, the nonlinear interactions increase the energy
dissipation rate, transferring energy from long non breaking wave trough short break-
ing wave. This energy transfer trough the spectral components is very important in
describing sediment transport occurring in the near-shore zone.
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2. Three-wave Quasi-kinetic approximation for triad interactions

To derive a spectral evolution equation for weak nonlinear waves in shallow water
depth with no ambient current field, Zaslavskii and Polnikov (1998) started from the
following expression of the Hamilton equation (Zakharov, 1974):

∂b(k)
∂t

� js(k)b(k) � �j�dk1�V1(k,k1,k2)b(k1)b(k2)d(k � k1�k2)dk2

�j�dk1�V2(k,k1,k2)b∗(k1)b(k2)d(k � k1�k2)dk2

�j�dk1�V3(k,k1,k2)b∗(k1)b∗(k2)d(k � k1 � k2)dk2 �

�j�dk1�dk2�W4(k,k1,k2,k3)b∗(k)b(k2)b(k3)d(k � k1�k2�k3)dk3} � ....

(5)

where j is the complex unity, star (∗) stands for the complex conjugate, V1(...),
V2(...) and V3(…) are the three-wave interaction coefficients, W4(...) is the most
important four-wave interaction coefficient, d(…) is the Dirac’s delta-function and

b(k) � �s(k)
2g
z(k) � j� g

2s(k)
js(k) (6)

is the ‘normal canonical’ variable, related to the Fourier-components of both the
surface elevation ζ(k) and the surface velocity potential φs(k) in the k-space. The
full expression of the coefficients V1(…), V2(…), V3(…) and W4(…) can be found
in Zaslavskii and Polnikov (1998).

Usually Eq. (5) is used to derive the evolution equation for the statistical second
moment of the normal canonical variable b(k). For a spatial homogeneous wave
field, the second moment is related to the wave action spectrum N(k) by the formula

�b(k)b∗(k�)� � N(k)d(k � k�), (7)

where symbol �…� means the theoretical ensemble averaging. Finally, the three-
wave kinetic equation, which describe the time evolution of N(k), can be expressed
as (Davidson, 1972)

∂N(k)
∂t

� 4Re��
t

0

dt�dk1�Q(k,k1,k2,t,t)dk2�. (8)

where explicit dependence of N(k) on time is omitted for simplicity, Re{...} is the
real part of the expression in brackets, t is the evolution physical time and t is the
integrating time variable. Other symbols are as follows:
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Q(…) � R1(k,k1,k2,t�)exp[j�s(k,�k1,�k2)t] �

� 0.5 R2(k,k1,k2,t�)exp[j�s(k,k1,�k2)t] � (9)

� R3(k,k1,k2,t�)exp[j�s(k,k1,k2)t]

where t� � t�τ, and

�s(k, ± k1, ± k2) � s(k) ± s(k1) ± s(k2) (10)

Ri(k,k1,k2,t�) � [V2
i (k,k1,k2)d(k � s(1,i)k1 � s(2,i)k2)] ×

× N(k)N(k1)N(k2)� 1
N(k)

�
s(1,i)
N(k1)

�
s(2,i)
N(k2)

�,
(11)

s(1,1) � s(2,2) � s(2,1) � �1; s(1,2) � s(1,3) � s(2,3) � 1. (12)

Due to the oscillating feature of Q, the time integration of (8) is the main theoreti-
cal problem. Assuming the integral upper limit equal to infinity (i.e. assuming very
slow nonlinear interaction), the integration of the harmonic component of Q results
in (Davidson, 1972):

Re��
	

0

exp[j�s(k, ± k1, ± k2)t]dt� 	 pd[(k, ± k1, ± k2)]. (13)

Due to impossibility to meet simultaneously the three-wave resonance conditions (1)
and (2), the delta-functions in (11) and (13) result in

∂N(k) /∂t � 0 (14)

(i.e. no evolution). Nevertheless, assuming a finite integral upper limit (i.e. t � Tb(k),
where Tb(k) is the physical interaction time), Zaslavskii and Polnikov (1998) found:

Re� �
Tb(k)

0

exp[j�s(k, ± k1, ± k2)t]dt� �
sin[Tb(k)�s(k, ± k1, ± k2)]

�s(k, ± k1, ± k2)

� pdb(�s(k, ± k1, ± k2)) (15)

which is in fact a spread d-function denoted hereinafter by the symbol
db(k, ± k1, ± k2). Unfortunately, due to its oscillating feature, the exact expression
(15) of db(k, ± k1, ± k2) cannot be used in practical computations. With the aim of
finding a more regular approximation, the following identity can be used (e.g. David-
son, 1972):

lim
T→	

Re��
T

0

exp[j�st]dt� � lim
b→0

Re� j
�s � jb� � lim

b→0

b
�s2 � b2. (16)
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From a physical point of view, β in (16) represents a small attenuation of the wave
amplitude with frequency �σ and it is therefore named attenuation parameter.
Finally, the solution of the problem is found using (16) instead of (15). Therefore,
the spread d-function db(k, ± k1, ± k2) is expressed as

db(k, ± k1, ± k2) �
1
p

b(k)
[�s(k, ± k1, ± k2)]2 � b2(k)

, (17)

and the evolution equation for the wave action spectrum becomes

∂N(k)
∂t

� 4p�dk1�{V2
1(k,k1,k2)d(k�k1�k2)db(k,�k1,�k2) ×

× [N(k1)N(k2)�N(k)(N(k1) � N(k2))]�2V2
1(k,k1,k2)d(k1 � k � k2) ×

× db(k1,�k,�k2)[N(k1)N(k)�N(k2)(N(k1) � N(k))]}dk2

(18)

It must be noticed that β(k) in (17) and (18) is the new theoretical function which
describes the small attenuation of the wave amplitude due to the quasi-resonant three-
wave interactions. In principal, β(k) could be estimated as the inverse of the interac-
tion time, i.e. β(k)
1/Tb(k), which is unfortunately not known apriori. With the
aim of finding an alternative method of estimation, Zaslavskii and Polnikov (1998)
proposed to rewrite (18) as:

∂N(k) /∂t � A(N)�B(N)N(k), (19)

where A(N) and B(N) are functions of the wave action density N(k), obtained group-
ing positive and negative terms in r.h.s. of (18). The factor B(N) in (19) can be
considered as the rate of wave action decrease due to the nonlinearity. The main
hypothesis of the theory consists in assuming B(N) as the estimation for the unknown
function β(k), i.e.:

b(k) � B(N) � 4p�dk1��V2
1(k,k1,k2)d(k � k1 � k2)db(k,�k1,�k2)[N(k1) � N(k2)] �

�2V2
1(k,k1,k2)d(k1 � k � k2)db(k1,�k,�k2)[N(k2)�N(k1)]�dk2 (20)

Solving iteratively (17) and (20) gives the function β(k).
It must be stressed that the approximation proposed by Zaslavskii and Polnikov

(1998) uses a couple of equations instead of one, as in the traditional theory.
System (18)-(20), which describes the wave action spectrum evolution in shallow

water, was investigated both analytically and numerically by Polnikov (1998). In
particular, the author studied the role of each integral term in (18) and the general
features of the nonlinear spectral evolution ∂N(k) /∂t in the case of a homogeneous
wave field propagating over constant depths. Among other results, it was found that
the energy transfer depends essentially on the behavior of β(k). The dependency of
β(k) on k was therefore investigated by varying the mean wave slope � and the local



585R. Piscopia et al. / Ocean Engineering 30 (2003) 579–599

depth h. In particular, it was found that the β(k) grows almost linearly with the wave
number k and the mean wave slope � but it is inversely dependent on the local
depth h, diminishing nearly to zero for values kph
1.

3. Wave spectrum model

3.1. General equations

Preliminary computations based on a non stationary model have shown (Polnikov
and Sychov, 1996) that the wave-field steady state is reached rather rapidly, i.e. in
the time of peak wave propagation from the open-sea boundary to the shore. There-
fore, the present work is based on a stationary spectral model of wave propagation.

The one-dimensional model used in our investigation is based on two equations:
1) the wave action evolution equation; 2) the momentum conservation equation. Such
an approach to the description of the spectral evolution was originally proposed by
Stive and Dingemans (1984) in the case of a single-component spectrum. In the
present work this approach was extended to the full spectral representation.

The evolution equation for the wave action spectrum in a discrete representation
(N(σi)) is expressed, in the case of no ambient currents and wave propagation nor-
mally to a parallel bottom contour, as:

∂
∂x

{N(si)Cg(si)} � NL(si)�Br(si), (21)

where Cg(si) is the group velocity of the spectral component with frequency s i.
Br(s i) and NL(s i) are the dissipation term due to wave breaking and the nonlinear
term due to triad interactions, respectively. A description of both these terms is
outlined for the discrete spectral representation in the next sub-sections.

The momentum conservation equation for free waves can be expressed, in the
case of no ambient currents and wave propagation normally to a parallel bottom
contour, as:

∂Sxx

∂x
� (h � h̄)

∂h̄
∂x

� 0, (22)

where h is the local depth, h̄ is the mean level variation, and Sxx is the normal
component of the radiation stress tensor (S) in the x direction. In the linear approxi-
mation, the radiation stress component (Sxx) is expressed as:

Sxx � �M
i � 1

�Cg(si)
C(si)

�
1
2�E(si)�s, (23)

where C(si) is the wave celerity of the spectral component, �s � si � 1�s i is the
spectral resolution, M is the number of spectral components, and E(s i) is the wave
energy spectral density, which is related to the wave action density by equation
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E(si) � N(si)si. (24)

The solution method for Eqs. (21) and (22) is outlined in the subsection 3.4.

3.2. Nonlinear term

This term represents the rate of the wave action density transfer through the spec-
trum due to the quasi-resonant triad interactions (for each wave component and per
unit area).

With the aim of introducing the three-wave quasi-kinetic approximation into the
model, the general formulation of the nonlinear term [(18), (20)] has been simplified
according to the considered situations. Assuming the shallow water condition
(kh � 1) for all the spectral components, allows us to simplify the expression of the
interacting coefficients V1(...), V2(...), V3(...) and W4(...). The quasi-kinetic system
for a discrete one-dimensional wave action spectrum in the k-space is expressed, in
the case of no ambient currents and wave propagation normally to a parallel bottom
contour, as:

NL(ki) �
9kig1/2�k
32ph1/2 { �i � 1

j � 1

kj(ki�kj)db(ki,kj)[NjNi-j�Ni(Nj � Ni-j)] �

�2 �M
j � i � 1

kj(kj�ki)db(ki,kj)[NiNj-i�Nj(Ni � Nj-i)]},

(25)

where ki, kj and |ki�kj| are the quasi-resonant three wave numbers, and

db(ki,kj) �
1
p

b(ki)
�s2(ki,kj) � b2(ki)

. (26)

In Eqs. (25) and (26) �s(ki, kj) and β(ki) are given by

�s(ki,kj) � 0.5�gh5|kikj(ki�kj)|, (27)

b(ki) �
9kig1/2�k
32ph1/2 { �i � 1

j � 1

kj(ki�kj)db(ki,kj)[Nj � Ni-j] �

�2 �M
j � i � 1

kj(kj�ki)db(ki,kj)[Nj-i�Nj]}.

(28)

The wave number ki is related to the frequency s i by the dispersion relation (4).
Furthermore, the relationship between the wave-action density and the nonlinear term
in the k-space and in the s-space are expressed as:

N(ki) � N(si)Cg(si), (29)

NL(si) �
NL(ki)
Cg(si)

. (30)
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The numerical method for the solution of the system (25)-(28) is presented in
subsection 3.4.

3.3. Dissipation term

The dissipation of wave action density due to breaking, for each wave component
and per unit area, can be expressed as:

Br(si) � WbN(si), (31)

where

Wb �
a
p
s̄Qb

H2
lim

H2
rms

, (32)

Eq. (31) is similar to that originally proposed by Eldeberky and Battjes (1996), who
elaborated the Battjes and Janssen (1978) theory about the dissipation of monochro-
matic wave energy due to breaking. While in the Battjes and Janssen formulation
Wb has the physical meaning of the wave-energy fraction dissipated by breaking, in
the present work Wb represents the fraction of the total wave action dissipated due
to breaking, for the reason of the linear relation between the wave energy and the
wave action.

In (32) a is the fitting coefficient (typical value a � 1), s̄ is the mean spectral
frequency, Qb is the breaking probability, Hrms is the root mean square height and
Hlim is the maximum non-breaking wave height. The definitions of s̄ and Hrms are
as follows

s̄ � ��M
i � 1

s3
i N(si) / �M

i � 1

siN(si), (33)

Hrms � �8�M
i � 1

siN(si)�s, (34)

The value of Hlim is computed by Miche’s criterion of the following kind (Stive and
Dingemans, 1984)

Hlim �
2pgd

k̄
tanh gs2pgd

k̄h�, (35)

where k̄ is the wave number corresponding to s̄, γd is the deep water breaking coef-
ficient (typical value γd � 0.14) and γs is the shallow water breaking coefficient
(typical value γs � 0.8).

For a fixed water depth, Qb is the fraction of waves exceeding the limiting wave
height (Hlim) and can be calculated using the following statistical relation derived
by Battjes and Janssen (1978):

lnQb � (Qb�1)
H2

lim

H2
rms

. (36)
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It should be noted that (31) implies that the proposed mechanism for the wave
breaking does not change the spectral shape but causes only a proportional reduction
of wave action density for each wave component. The reliability of this assumption
was proved by Eldeberky and Battjes (1996) using numerical simulations.

3.4. Numerical method

The numerical solution of Eqs. (21) and (22), which are discretized over an uni-
form grid, is based on the space marching fourth order Runge–Kutta method.

Firstly, the normal component of the radiation stress tensor in the x direction
(Sxx) is computed using (23). Secondly, the mean water level variation is calculated
solving (22), and the local depth is up-dated correspondingly. Furthermore, once the
nonlinear and the dissipative terms are properly evaluated, Eq. (21) can be solved.

The system (25)-(28) must be solved to compute the nonlinear term. Assuming

b(ki)0 � 0.1si (37)

as guess value makes it possible to solve (25). Afterwards, the system (25)-(28) is
iteratively solved till the convergence condition

|b(ki)n�b(ki)n-1| � xb(ki)n (38)

is met (n is the iteration index). Some numerical tests have shown that, if ξ is less
than 0.1, the choice of ξ doesn’ t remarkably influence the solution of the system. It
should be noticed that when ξ � 0.1 three or four iterations are sufficient to satisfy
the convergence condition (38). Substituting β(ki)n into (25) makes it possible to
calculate the nonlinear term in k-space (NL(ki)). Finally, the nonlinear term NL(ki)
is related to the nonlinear term in σ-space (NL(σi)) by (30).

Using (33) and (34) is possible to compute s̄ and Hrms and therefore the breaking
term. The mean wave number k̄ results from the dispersion relation (4). The
maximum limiting wave height (Hlim) is computed by Miche’s criterion (35) and the
parameter Qb is found solving iteratively (36). Substituting all these values into (32),
the wave-action density dissipated by breaking is found using (31).

After (21) is solved, the solution of the problem advances in space.

4. Method of investigation

The wave evolution in shallow water is determined mainly by the following physi-
cal phenomena: shoaling, refraction, nonlinear interactions and breaking. The combi-
nation of these phenomena makes the experimental investigation of each evolution
mechanism rather complicated. Nevertheless, in numerical experiments, it is possible
to separate each effect by choosing the simplest physical situation and the related
expression for the source function in the r.h.s. of (21).

In the present paper waves are considered propagating from the open boundary
normally to the shore, which makes possible to neglect the refraction effect leaving
its analysis for further study.
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Aiming to validate the three-wave quasi-kinetic approximation, at first some sim-
ple test simulations, without invoking any experimental data, was considered. The
results obtained in these simulations were in fact analyzed on the basis of general
physical considerations, with the particular aim of pointing out the role of each
evolution mechanism. Once the influence of each phenomenon on the spectral evol-
ution was clarified, the numerical results were compared to the experimental
measurements obtained by Arcilla et al. (1994) and Beji and Battjes (1993).

The results of the numerical tests are presented in the next section while the vali-
dation is presented in the section six. The analysis of the results are carried out in
terms of the following spectral characteristics:

1. two integral parameters;
2. shape (E(si)).

The integral parameters taken into account are the root mean square height (Hrms),
given by (34), and the mean period (Tm) defined as

Tm �
2p
s̄

, (39)

where s̄ is given by (33).
The use of wave energy spectrum (E(σi)) instead of wave action one (N(σi)) is

provided by standard measurements of energy spectrum “ in situ” . Transition from
E(σi) to N(σi) and to N(ki) is governed by relations (24) and (29).

5. Results of numerical testing

The test simulations were carried out in order to understand the role of three-wave
non resonant interactions and breaking in the wave spectrum evolution in shallow
water (i.e. when kph � 1). In order to separate the effect of shoaling, the following
two situations are considered:

� a) constant depth (no shoaling, the nonlinear and breaking effects are present);
� b) constant bottom slope (all the mechanisms occur).

In all the tests, the 1D axis of propagation is 100 m long and is discretized in 101
points (�x � 1 m). The shape of the initial spectrum is given by the JONSWAP para-
meterization

E(s) � Cs�5g2exp��1.25sp

s �5�gexp�
(s�sp)2

0.01s2 �, (40)

where C is the Philips coefficient, sp is the peak frequency and γ is the peak enhance-
ment coefficient. For all the testing simulations carried out, these parameters had the
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following values: C � 0.0005, sp � 0.785 rad / s (fp � 0.125 Hz), γ � 3.4,
Hrms � 0.43 m.

The numerical results are considered at six fixed spatial points distributed uni-
formly (every 20 m) from the outer boundary to the shore.

5.1. Constant depth case

The water depth is taken equal to h � 2 m (i.e. kph � 0.36 and Hlim /Hrms�4).
The principal results are presented in Fig. 1, where the spectral shape E(s) at the
six locations is depicted in the case in which only the nonlinear term is included in
the r.h.s of (21). The figure shows that secondary peaks at multiple frequencies
(double and triple of sp) are obtained. A significant increase of spectral energy at
frequencies higher than sp and a significant decrease of spectral density in a band
centered on sp characterize the evolution of the spectrum. This behavior is typical
of the spectral shape observed experimentally by Freilich and Guza (1984). On the
basis of this result, it can be definitely concluded that the triad nonlinear interaction
provides energy transfer from the band centered on the primary peak to the upper
frequencies (super-harmonics).

5.2. Constant slope case

A weakly sloped depth profile [h(x) � 2.0–0.01x, 0�x�100 m,
0.25�kph�0.36] was considered. The spectral shape evolution is presented in Fig.
2, in which four cases are shown, corresponding to the following model configur-
ation:

a) pure shoaling (no source terms are included in the r.h.s. of (21));
b) shoaling and nonlinear interactions (the breaking term is excluded);

Fig. 1. Constant depth case—a) spectral evolution due to nonlinear interaction. (—×—) boundary con-
dition (JONSWAP spectrum; C � 0.0005, sp � 0.785 rad /s, γ � 3.4, Hrms � 0.43 m); (—�—) station
2 at 20 m from open-sea; (—�—) station 3 at 40 m from open-sea; (—�—) station 4 at 60 m from
open-sea; (—�—) station 5 at 80 m from open-sea; (—�—) station 6 at 100 m from open-sea.
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Fig. 2. Constant slope case–a) spectral evolution due to shoaling; b) spectral evolution due to nonlinear
interaction and shoaling; c) spectral evolution due to nonlinear interaction, shoaling and breaking; d)
spectral evolution due to shoaling and breaking. For other notations see legend of Fig. 1.

c) shoaling, breaking and nonlinear interactions (all terms are included);
d) shoaling and breaking (the nonlinear term is excluded).

The result obtained in the first case (Fig. 2a) shows a rather strong shoaling
(�50%) without remarkable change of the peak frequency. This is a typical test to
check the numerical scheme.

In the second case (Fig. 2b), the result shows the combined effect of nonlinearity
and shoaling. It should be noticed that the shoaling effect on the peak-side-band
components is completely suppressed by the nonlinear interactions. The secondary
peaks are visible only at small distances from the outer boundary (i.e. for a short
evolution time) while an unrealistic white noise spectrum is obtained at large dis-
tances.

In the third case (Fig. 2c), the secondary peaks due to nonlinear interactions are
conserved for all the evolution time, but with different amplitudes. Under these con-
ditions, the energy traveling with the secondary peaks is still remarkable. Fig. 2d
illustrates the evolution of a wave spectrum without nonlinear term. The figure shows
the absolute absence of secondary peaks. It must be noted that while the shoaling
is only reduced by the breaking term when kph � 0.3, it is completely suppressed
when kph � 0.3.
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It should also be noticed that during the propagation (Fig. 3a), whilst Tm (39)
decreases radically (about 55%), Hrms (34) is reduced to about 30% of its maximum
value when both nonlinear and breaking terms are included in the r.h.s. (21). The
mean period evolution is clearly related to nonlinear interactions. Herewith, the
Hrms evolution is not determined only by breaking. The exclusion of the nonlinear
term from the computation leads in fact to an Hrms reduction of 2% of its maximum
value (Fig. 3b).

In the present case, nonlinearity influences severely the breaking dissipation inten-
sity. From a physical point of view, this effect can be interpreted considering the
energy transfer from the non breaking long wave to the intensively breaking short
wave produced by the nonlinear interactions.

Fig. 3. Constant slope case—(1) Hrms (–×–) and (2) Tm (—�—): a) evolution due to nonlinear interac-
tion, shoaling and breaking (the relative spectral shape evolution is shown in Fig. 2c); b) evolution due
to shoaling and breaking (the relative spectral shape evolution is shown in Fig. 2d).
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6. Validation of the three-wave quasi-kinetic approximation

In order to validate the three-wave quasi-kinetic approximation for spectral evol-
ution in shallow water, the numerical model has been applied to the tests carried
out by Arcilla et al. (1994) and by Beji and Battjes (1993).

It must be noticed that the breaking term has first been calibrated in order to select
the values of γd and γs which give the best agreement between the numerical and
observed space evolution of Tm and Hrms [(39), (34)].

6.1. Experiment of Arcilla et al. (1994)

Fig. 4 illustrates both the depth profile and the location of the wave recording
station reproduced in the numerical test, in which the relative depth parameter varies
between 0.29 � kph � 0.53. The breaking coefficients, determined during the cali-
bration, are: γd � 0.12 and γs � 0.64. The input spectral shape, which has been digit-
ized from that presented in the original paper, is characterized by a very narrow
energy distribution around the peak frequency (sp � 0.785 rad /s), with Hrms �
0.43 m.

First and foremost, we note the features of the bottom topography (see Fig. 4)
and try to foretell the expected spectral evolution. The wave-spectrum evolution
induced by the depth profile can be divided into two different stages. In the first
stage, the wave motion, characterized by a very narrow spectrum, is incident on a
rather steep bottom slope (about 1:20), small in length. In principle, this situation
must lead to a marked shoaling effect and a weak nonlinear interaction (due to the
short interaction time). In the second stage, the bottom slope is mild (about 1:70).
Now, the expected contributions of the shoaling and nonlinearity effects must be
interchanged.

Fig. 4. Depth profile and recording stations distribution used in the experiment of Arcilla et al. (1994).
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The evolution of both the computed and observed Hrms and Tm are shown in Fig.
5, while Fig. 6 shows the comparison between the shapes of the spectrum calculated
using the numerical model, and those reported in the original paper. It must be
noticed that both integral characteristics and spectral shapes show good agreement,
although a small discrepancy between the primary peak intensities takes place at the
final stage of evolution (Figs. 6d and 6e).

The obtained discrepancy at stations n°4 and 5 (see Figs. 6d and 6e) might be
explained as follows. On the one hand, it is necessary to take into account the confi-
dence intervals of the observed spectra, which are not presented in Arcilla et al.
(1994). On the other hand, since the density energy distribution in the high frequency
band is slightly overestimated it is possible to assume that the nonlinear term works
too intensively for kph�0.3. This assumption can be strengthened by comparing the
numerical and experimental evolutions of Hrms and Tm at station no 4 and 5 (see Fig.
5). The computed Tm is in fact underestimated by about 1 s while the computed
Hrms is practically coincident with the measured one.

6.2. Experiment of Beji and Battjes (1993)

Fig. 7 illustrates both the depth profile and the location of the wave recording
station reproduced in the numerical test, in which the relative depth parameter varies
between 0.28 � kph � 0.6. The bar profile is characterized by an offshore slope of
1:200 and an inshore slope of 1:100. The breaking coefficients, determined during
the calibration step, are: γd � 0.12 and γs � 0.64. The input spectral shape, which
has been digitized from that presented in the original paper, is characterized by a
very narrow energy distribution around the peak frequency (σp � 2.827 rad / s), and
by Hrms � 0.017 m.

Fig. 5. Arcilla et al. experiment (1994)—model calibration. (1) Root mean square wave height (�
observed, — computed) and (2) mean period (�observed, — computed).
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Fig. 6. Arcilla et al. experiment (1994)—spectral shape evolution. Comparison of the numerical results
(—) against the observed data (�). a) open-sea boundary condition - recording station 1; b) recording
station 2; c) recording station 3; d) recording station 4; e) recording station 5;

The evolution of both the computed and observed Hrms and Tm are shown in Fig.
8, which shows very good agreement, while Fig. 9 shows the comparison between
the shapes of the spectrum calculated using the numerical model and those reported
in the original paper. It must be noticed that the shoaling effect is particularly evident
in this experiment. In the first stage of wave propagation, Hrms significantly increases
and Tm slightly decreases (see Fig. 8). It must be noticed that, in this case, Hlim

corresponding to the lower depth at the top of the bar is about three times greater
that Hrms (Hlim � 0.064 m and Hrms � 0.023 m). Over the bar, no breaking and no
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Fig. 7. Depth profile and recording stations distribution used in the experiment of Beji and Battjes (1993).

Fig. 8. Beji and Battjes experiment (1993)—model calibration. For other notations see legend of Fig. 5.

shoaling occur but intense nonlinear interaction is evident. After the bar, neither
breaking nor nonlinear interaction modify the shape of the spectrum.

The spectral shape evolution is shown in Fig. 9. As can be seen, the computed
spectral shapes agree with the observed ones, although the secondary peaks are
underestimated at final stations.

It should be noted that this experiment was treated in detail in Eldeberky and
Battjes (1996). Using a phase-resolving wave model with special fitting parameters
for the triads interaction term, these authors found the numerical spectral evolution
in good agreement with the experimental data. In the present work the same agree-
ment was obtained without any fitting parameter for the nonlinear term. This feature
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Fig. 9. Beji and Battjes experiment (1993)—spectral shape evolution. For other notations see legend of Fig. 6.

is the main advantage of the quasi-kinetic approximation used in the present work
to reproduce the nonlinear interaction effect.

7. Conclusions

The present work was aimed to validate the three-wave quasi-kinetic approxi-
mation for the nonlinear interaction in shallow water, using specific test for unidirec-
tional waves. A spectral model that adequately reproduces all the main features in
the evolution of the shallow-water wave spectrum is developed. The nonlinear term
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based on the Zaslavskii and Polnikov (1998) three-wave quasi-kinetic approximation
is found to be of considerable importance in this model. Additionally it is shown
that the breaking term proposed by Battjes and Janssen (1978), expressed in the
spectral representation by Eldeberky and Battjes (1996), also plays a very signifi-
cant role.

The computations performed give a clear idea of the contributions made by differ-
ent physical processes to the evolution of the wave spectrum in shallow-water. It is
shown that three-wave non-resonant nonlinear interactions can be used to simulate
the wave energy transfer from the fundamental harmonic to higher frequencies, with
the formation of peaks at multiple frequencies. In terms of integral wave character-
istics, the nonlinear effect is responsible for a significant decrease in the mean wave
period Tm. However, this decrease is generally not accompanied by a significant
change in the root mean square wave height. But when breaking occurs, the nonlinear
interactions increase the energy dissipation rate, transferring energy from long non
breaking waves trough short breaking waves. Moreover, it is found that the Battjes–
Janssen breaking mechanism adequately describes the effect of shoaling compen-
sation and the formation of the high-frequency tail of the spectrum.

The problem of joining the four-wave nonlinear approximation, which is valid in
deep water (kph � 1), and the three-wave non-resonant approximation, which is
effective in shallow water (kph � 1), calls for further study.

Acknowledgements

Authors are grateful to Prof. Noli for the organizing of the joint study and to the
Administration of the Rome University ‘La Sarienza’ for the financial support for
Prof. V. Polnikov visiting the Civil Engineering Department of the University.

References

Abreu, M., Larraza, A., Thornton, E., 1992. Nonlinear transformation of directional wave spectra in
shallow water. J. Geophys. Res. 97C, 15579–15589.

Arcilla, A.S., Roelvink, B.A., O’Connor, A.J.H.M., et al., 1994. The Delta Flume ‘93 Experiment. Proc.
Coastal Dynamics Conf.’94, Barcelona, Spain, pp. 488–502.

Battjes, J.A., Janssen, J.P.F.M., 1978. Energy loss and set-up due to breaking of random waves. Proc.
16th Int. Conf. On Coastal Eng., pp. 569–587.

Beji, S., Battjes, J.A., 1993. Experimental investigation of wave propagation over a bar. Coastal Eng 19,
151–162.

Beji, S., Nadaoka, K., 1997. Spectral modelling of nonlinear shoaling and breaking over arbitrary depths.
Proc. Coastal Dynamics ‘97, pp. 285–300.

Beji, S., Nadaoka, K., 1999. A spectral model for unidirectional nonlinear wave propagation over arbitrary
depths. Coastal Eng 36, 1–16.

Crawford, D.R., Saffman, P.G., Yuen, H.C., 1980. Evolution of a random inhomogeneous field of nonlin-
ear deep-water gravity waves. J. Wave Motion. 2, 1–16.

Davidson, R.C., 1972. Weak turbulence theory of nonlinear wave-wave interactions. In: Methods in non-
linear plasma theory. Academic Press, New York & London, pp. 243–273.



599R. Piscopia et al. / Ocean Engineering 30 (2003) 579–599

Eldeberky, Y., Battjes, Y., 1996. Spectral modelling of wave breaking: application to Boussinesq equation.
J. Geophys. Res. 101 (C1), 1253–1264.

Elgar, S., Guza, R.T., 1986. Non-linear model predictions of bispectra of shoaling surface gravity waves.
J. Fluid Mech 167, 1–18.

Freilich, M.H., Guza, R.T., 1984. Non-linear effects on shoaling surface gravity waves. Phil. Trans. Royal
Soc. London, A 311, 1–41.

Hasselmann, K., 1962. On the non-linear energy transfer in a gravity wave spectrum. Pt. 1. J. Fluid Mech.
12, 481–500.

Hasselmann, K., Ross, D.B., Muller, P., Sell, W.A., 1976. Parametric wave prediction model. J. Phys.
Oceanogr. 6 (2), 200–228.

Holthuijensen, L.H., Booij, N., Ris, R.C., 1993. A spectral wave model for the coastal zone. In: Magoon,
O.T., Hemsley, J.M. (Eds.), Ocean Wave Measurement and Analysis. ASCE, pp. 613–641.

Madsen, P.A., Sørensen, O.R., 1992. A new form of the Boussinesq equations with improved linear
dispersion characteristics. Pt. 2: a slowly-varying bathymetry. Coastal Eng. 18, 183–205.

Madsen, P.A., Sørensen, O.R., 1993. Bound waves and triad interactions in shallow water. J. Ocean Eng.
20 (4), 359–388.

Nwogu, O., 1994. Non-linear Evolution of Directional Wave Spectra in Shallow Water. Proc. Coastal
Eng. Conf. 24th, pp. 447–481.

Peregrine, D.H., 1967. Long waves on a beach. J. Fluid Mech. 27, 815–827.
Phillips, O.M., 1960. On the dynamics of unsteady gravity waves of finite amplitude. Pt. 1. J. Fluid Mech.

9, 193–217.
Polnikov, V.G., Sychov, E.N., 1996. On a numerical modeling of a wave spectrum evolution for shallow

water. Oceanology 36 (6), 827–834 in Russian.
Polnikov, V.G., 1998. A study of the three-wave quasi-kinetic approximation equations for nonlinear

gravity waves in a finite depth water. Izv., Atmospheric and Ocean Phys. 34 (6), 757–764 English
translation.

Resio, D.T., 1988. A steady-state Wave Model for Coastal Applications. Proc. Coastal Eng. Conf. 21st,
pp. 929–940.

Stive, M., Dingemans, M., 1984. Calibration and Verification of a One Dimensional Wave Energy Decay
model. Report on investigation, T.O.W.

Young, I.R., Van Vledder, G.Ph., 1993. The central role of non-linear interactions in wind–wave evolution.
Phil. Trans. Royal Soc. L. A 342, 505–524.

Zakharov, V.E., 1974. Hamiltonian formalism for waves in the non-linear media with dispersion. Izv.
VUZov, scr. Radiophysica 17 (4), 431–453.

Zakharov, V.E., 1998. Weakly nonlinear waves on the surface of an ideal finite depth fluid. Amer. Math.
Soc. Trans 182 (2), 167–197.

Zaslavskii, M.M., Krasitskii, V. P., Gavrilin, B.L., 1995. Shallow Water Limitations for Application of
the Four-wave Interactions of Nonlinear waves in the Finite Depth Water. Proc. Conf. Dynamics of
Ocean and Atmosphere. Moscow, November 22–25, p. 139.

Zaslavskii, M.M., Polnikov, V.G., 1998. Three-wave quasi-kinetic approximation in the problem of non-
linear gravity wave spectrum evolution in water of finite depth. Izv., Atmospheric and Ocean Phys.
34 (5), 609–616 English translation.


	Validation of the three-wave quasi-kinetic approximation for the spectral evolution in shallow water
	Introduction
	Three-wave Quasi-kinetic approximation for triad interactions
	Wave spectrum model
	General equations
	Nonlinear term
	Dissipation term
	Numerical method

	Method of investigation
	Results of numerical testing
	Constant depth case
	Constant slope case

	Validation of the three-wave quasi-kinetic approximation
	Experiment of Arcilla et al. (1994)
	Experiment of Beji and Battjes (1993)

	Conclusions
	Acknowledgements

	References

