Публикации

Роль дренажных каналов осушенных торфяников в изменении климата.Authors: E. A. Soldatova, V. N. Kolotygina, L. A. Krivenok, V. Ivanov, E. S. Krestyannikova & T. V. Skorospekhova

Abstract: Peatlands are recognized as one of the most critical ecosystems for long-term carbon sequestration, although they cover approximately 3% of the Earth’s surface. However, the drainage and peat extraction significantly disrupt the carbon balance of peatlands. Specifically, the drainage network, an integral component of drained peatlands, contributes substantially to greenhouse gas emissions and lateral carbon transport. In eutrophic peatlands, the drainage system also serves as a source of nutrients for receiving water bodies. To predict changes in the carbon balance, to develop effective reclamation efforts, and to implement climate-related projects, it is essential to understand the processes governing the chemical composition of drainage waters. In this study, we examined the chemical composition of drainage water in the eutrophic Tarmanskoe Peatland (West Siberia) using historical and contemporary data. Seasonal dynamics of dissolved carbon and fluxes of carbon dioxide (CO2) and methane (CH4) to the atmosphere were analyzed for 2024. Obtained results have revealed an increasing role of evaporation in the formation of water composition since launching the drainage system. This trend is expressed in an increase in chloride and sodium ion ratios, along with shifts in the water–rock equilibrium from kaolinite towards montmorillonite and carbonates. The equilibria in the carbonate system and the ratios of major ions indicate that carbon redistribution occurs through the dissolution and precipitation of carbonates during the drainage system’s operation. Seasonal dynamics of dissolved carbon and carbon-bearing greenhouse gas fluxes revealed distinct patterns. In summer, CO2 and CH4 fluxes from water surface of the drainage ditches increased, while CO2 emissions from the pond decreased due to the activity of photosynthetic organisms. Notably, a dry drainage ditch exhibited unique dynamics: summer CO2 fluxes from its oversaturated bottom sediments decreased more than fivefold, and CH4 fluxes remained near zero, comparable to spring levels. Meanwhile, both CH4 and CO2 are accumulated in the pore waters in dissolved forms. The results emphasize the importance of studying the carbon biogeochemistry in waterlogged soils and bottom sediments and the factors driving CO2 and CH4 accumulation in pore waters. These findings provide critical insights for developing novel approaches to the reclamation and implementation of climate-related projects for drained peatlands.


Чем мы дышим в Москве? Учёные ИФА РАН и Томского политеха исследовали состав столичного воздуха зимой

Москва — огромный мегаполис, который постоянно развивается. Строятся новые районы, дороги, промышленные объекты, что неизбежно влияет на качество воздуха, которым мы дышим. Одним из ключевых факторов загрязнения являются аэрозольные частицы, особенно пылевые. Долгое время оставалось мало сведений о том, из чего конкретно состоят эти частицы в московском воздухе и какую опасность они несут. Почему важно исследовать морфологию и состав аэрозольных частиц в атмосфере? Морфология и состав аэрозольных частиц напрямую влияют на их реакционную способность в атмосфере. Это, в свою очередь, сказывается на оптических свойствах атмосферы (как воздух рассеивает и поглощает свет), радиационном режиме (сколько солнечной энергии достигает Земли), химических процессах (как загрязняющие вещества взаимодействуют друг с другом), образовании облаков и климате Земли, а также на здоровье человека (форма и размер частиц определяют, насколько глубоко они проникают в лёгкие).

Недавно вышла статья, авторами которой являются учёные из Института физики атмосферы им. А.М. Обухова РАН (ИФА РАН) и Национального исследовательского Томского политехнического университета (ТПУ). В своём исследовании они сосредоточились на изучении морфологии и минерального состава пылевых аэрозольных частиц в приземном слое атмосферы Москвы в зимний период. Исследование минерально-вещественных характеристик пылевых частиц позволило выявить и идентифицировать как природные, так и техногенные образования в составе московских аэрозолей в зимнее время. По результатам картирования поверхности фильтра с аэрозольной пробой установлено, что большая часть микроминералов в пылевых частицах аэрозолей зимой представлена кальциевыми фазами. Это может быть связано, например, с использованием реагентов на дорогах или строительной деятельностью. В меньшей степени присутствуют силикатные и алюмосиликатные частицы. Минералы и сплавы железа составляют порядка 10-15% поверхности образца. Учёные обнаружили микрочастицы, содержащие широкий спектр потенциально токсичных элементов — тяжёлых металлов и металлоидов. Эти элементы могут представлять опасность для здоровья населения. Их происхождение характеризуется как техногенное или смешанное, что подтверждается результатами синхронных исследований элементного состава аэрозолей. Выделено несколько основных групп металлосодержащих микрочастиц в приземном аэрозоле: Сульфаты: преимущественно барий (Ba), стронций (Sr). Сульфиды: железо (Fe), сурьма (Sb), свинец (Pb). Оксиды: железо (Fe), медь (Cu), мышьяк (As), кадмий (Cd), вольфрам (W), свинец (Pb). Интерметаллиды: такие как Pb-Sn-Zn, Pb-Zn, Cu-Zn, Cu-Pb, Te-Sb-Al-Bi, Fe-Ni-Cu-Sn, Fe-Cr-Ni. Самородные металлы: свинец (Pb), цинк (Zn), никель (Ni), теллур (Te), железо (Fe), цирконий (Zr), вольфрам (W).

Пылевая фракция частиц вносит основной вклад в общую массу атмосферных аэрозолей. При этом пыль, образующаяся в результате человеческой деятельности, представляет опасность для окружающей среды и здоровья населения, поскольку может содержать потенциально токсичные элементы.

— отмечает один из авторов исследования Дина Петровна Губанова, к.ф.-м.н., с.н.с. Лаборатории газовых примесей атмосферы ИФА РАН. Результаты этого исследования дополняют знания о составе воздуха в мегаполисе и могут быть использованы для более точной оценки роли аэрозольных частиц в атмосферных процессах, а также для разработки мер по улучшению качества воздуха.

Подробнее с результатами исследования можно ознакомиться в статьеМикроминеральный состав и морфология пылевых частиц приземного аэрозоля в Московском мегаполисе зимой // Д.П. Губанова, С.С. Ильенок, А.В. Таловская.

Отличительные особенности развития извержения подводного вулкана Тонга по данным акустического мониторинга

Учёные из Института физики атмосферы им. А.М. Обухова РАН (Косяков С.И., Куличков С.Н., Чунчузов И.П.) в статье “Отличительные особенности развития извержения подводного вулкана Тонга по данным акустического мониторинга” проанализировали акустико-гравитационные волны, вызванные извержением подводного вулкана Хунга-Тонга-Хунга-Хаапай (Тонга). Эти волны распространялись на огромные расстояния и были зафиксированы инфразвуковыми станциями по всему миру.  Анализ инфразвуковых сигналов позволил выявить четыре отдельных события в процессе извержения (рис. 1): первое связано с разрушением лавовой пробки и генерацией волны разряжения, а три последующих были вызваны испарением воды, попавшей в магматический очаг вулкана после разрушения пробки, и имели суммарную энергию 2–3 × 10¹⁸ Дж (200-300 млн тонн в тротиловом эквиваленте).  Акустико-гравитационные волны распространялись в виде мод Лэмба* с переходом от сферического фронта к цилиндрическому на расстояниях больше 500 км. Они обогнули Землю три раза. Трансформация формы и длительности сигнала от вулкана Тонга во время его распространения на большие расстояния была аналогична трансформации сигналов от импульсных источников высокой мощности, таких как взрывы ядерных бомб и Тунгусского метеорита. На рис.2 изображены пароводяные облака от взрыва вулкана Тонга на начальной стадии его извержения и спустя некоторое время после его извержения. *Моды Лэмба (или волны Лэмба, названные в честь английского физика Г. Лэмба) — это тип упругих волн, которые распространяются в твёрдых пластинах (или тонких слоях) со свободными границами. Они представляют собой один из видов нормальных волн в упругих волноводах. Исследование раскрыло новые детали одного из самых грандиозных природных событий XXI века. Эти данные открывают новые знания о механизмах подводных извержений и их влияние на планету. 

Подробнее читайте в статье.

Оценка загрязнения атмосферы москвы транспортными потоками в зимнее и летнее время

В журнале «Транспортное дело России» вышла статья сотрудников Лаборатории моделирования атмосферного переноса ИФА РАН Матешевой А.В., Лысовой О.В. и магистранта РУТ Гончара Р.В посвящённая исследованию загрязнения атмосферного воздуха в Москве, обусловленного выбросами автомобильного транспорта. В  исследовании оценены выбросы оксида углерода, оксида азота, диоксида серы и аммиака от уличной сети Москвы в 2024 году с учётом экологического класс транспортных средств, вид топлива и техническое состояние автомобиля. Расчеты проведены для основных дорожных артерий столицы. Анализировались среднемесячные выбросы за июль и январь для изучения сезонных колебаний. В зимний период выбросы CO составляют 6,5 кт/месяц из-за снижения транспортного потока, а летом — 10 кт/месяц при увеличении потока.  На основе этих данных были проведены модельные расчеты загрязнения атмосферы от транспортных потоков в теплый и холодный периоды года (в январе и июле) 2024 года. В результате выяснилось, что на пространственное распределение концентраций загрязняющих веществ в январе и июле влияют не только лишь метеорологические условия, но и количество транспортных средств, а также состав транспортного потока. На крупных магистралях, таких как МКАД и ТТК, преобладают выбросы от грузового и общественного транспорта на дизельном топливе, в то время как на других дорогах основными источниками являются легковые автомобили с бензиновыми двигателями. 

 Одновременно с этим в зимний период фиксируются локальные накопления загрязняющих веществ в районах с высокой автомобильной нагрузкой, что связано с низкими температурами и слабым рассеиванием выбросов. Летом же концентрации распределены более равномерно благодаря более интенсивному  рассеиванию: высоким температурам и усиленной конвекции. В первой половине июля осадки способствовали очищению воздуха, тогда как во второй половине, при сухой погоде, наблюдалось небольшое увеличение концентрации загрязняющих веществ. Отмечается, что среднемесячное содержание всех исследуемых загрязняющих веществ за выбранный период не превышает предельно допустимых значений. 

Подробнее с полученными результатами можно будет ознакомиться в статье.